The task of aspect extraction is an important component of aspect-based sentiment analysis. However, it usually requires an expensive human post-processing to ensure quality. In this work we introduce Aspect On, an interactive solution based on online learning that allows users to post-edit the aspect extraction with little effort. The Aspect On interface shows the aspects extracted by a neural model and, given a dataset, annotates its words with the corresponding aspects. Thanks to the online learning, Aspect On updates the model automatically and continuously improves the quality of the aspects displayed to the user. Experimental results show that Aspect On dramatically reduces the number of user clicks and effort required to post-edit the aspects extracted by the model.
In this paper, we present our participation to the EmoContext shared task on detecting emotions in English textual conversations between a human and a chatbot. We propose four neural systems and combine them to further improve the results. We show that our neural ensemble systems can successfully distinguish three emotions (SAD, HAPPY, and ANGRY) and separate them from the rest (OTHERS) in a highly-imbalanced scenario. Our best system achieved a 0.77 F1-score and was ranked fourth out of 165 submissions.
We present a comparison of automatic metrics against human evaluations of translation quality in several scenarios which were unexplored up to now. Our experimentation was conducted on translation hypotheses that were problematic for the automatic metrics, as the results greatly diverged from one metric to another. We also compared three different translation technologies. Our evaluation shows that in most cases, the metrics capture the human criteria. However, we face failures of the automatic metrics when applied to some domains and systems. Interestingly, we find that automatic metrics applied to the neural machine translation hypotheses provide the most reliable results. Finally, we provide some advice when dealing with these problematic domains.
We propose and study three different novel approaches for tackling the problem of development set selection in Statistical Machine Translation. We focus on a scenario where a machine translation system is leveraged for translating a specific test set, without further data from the domain at hand. Such test set stems from a real application of machine translation, where the texts of a specific e-commerce were to be translated. For developing our development-set selection techniques, we first conducted experiments in a controlled scenario, where labelled data from different domains was available, and evaluated the techniques both with classification and translation quality metrics. Then, the bestperforming techniques were evaluated on the e-commerce data at hand, yielding consistent improvements across two language directions.
Whenever the quality provided by a machine translation system is not enough, a human expert is required to correct the sentences provided by the machine translation system. In such a setup, it is crucial that the system is able to learn from the errors that have already been corrected. In this paper, we analyse the applicability of discriminative ridge regression for learning the log-linear weights of a state-of-the-art machine translation system underlying an interactive machine translation framework, with encouraging results.