Marcel Gohsen
2024
Task-Oriented Paraphrase Analytics
Marcel Gohsen
|
Matthias Hagen
|
Martin Potthast
|
Benno Stein
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Since paraphrasing is an ill-defined task, the term “paraphrasing” covers text transformation tasks with different characteristics. Consequently, existing paraphrasing studies have applied quite different (explicit and implicit) criteria as to when a pair of texts is to be considered a paraphrase, all of which amount to postulating a certain level of semantic or lexical similarity. In this paper, we conduct a literature review and propose a taxonomy to organize the 25 identified paraphrasing (sub-)tasks. Using classifiers trained to identify the tasks that a given paraphrasing instance fits, we find that the distributions of task-specific instances in the known paraphrase corpora vary substantially. This means that the use of these corpora, without the respective paraphrase conditions being clearly defined (which is the normal case), must lead to incomparable and misleading results.
2023
Paraphrase Acquisition from Image Captions
Marcel Gohsen
|
Matthias Hagen
|
Martin Potthast
|
Benno Stein
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
We propose to use image captions from the Web as a previously underutilized resource for paraphrases (i.e., texts with the same “message”) and to create and analyze a corresponding dataset. When an image is reused on the Web, an original caption is often assigned. We hypothesize that different captions for the same image naturally form a set of mutual paraphrases. To demonstrate the suitability of this idea, we analyze captions in the English Wikipedia, where editors frequently relabel the same image for different articles. The paper introduces the underlying mining technology, the resulting Wikipedia-IPC dataset, and compares known paraphrase corpora with respect to their syntactic and semantic paraphrase similarity to our new resource. In this context, we introduce characteristic maps along the two similarity dimensions to identify the style of paraphrases coming from different sources. An annotation study demonstrates the high reliability of the algorithmically determined characteristic maps.
Search