Marcely Zanon-Boito

Also published as: Marcely Zanon Boito


2023

pdf bib
NAVER LABS Europe’s Multilingual Speech Translation Systems for the IWSLT 2023 Low-Resource Track
Edward Gow-Smith | Alexandre Berard | Marcely Zanon Boito | Ioan Calapodescu
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper presents NAVER LABS Europe’s systems for Tamasheq-French and Quechua-Spanish speech translation in the IWSLT 2023 Low-Resource track. Our work attempts to maximize translation quality in low-resource settings using multilingual parameter-efficient solutions that leverage strong pre-trained models. Our primary submission for Tamasheq outperforms the previous state of the art by 7.5 BLEU points on the IWSLT 2022 test set, and achieves 23.6 BLEU on this year’s test set, outperforming the second best participant by 7.7 points. For Quechua, we also rank first and achieve 17.7 BLEU, despite having only two hours of translation data. Finally, we show that our proposed multilingual architecture is also competitive for high-resource languages, outperforming the best unconstrained submission to the IWSLT 2021 Multilingual track, despite using much less training data and compute.

2022

pdf bib
Findings of the IWSLT 2022 Evaluation Campaign
Antonios Anastasopoulos | Loïc Barrault | Luisa Bentivogli | Marcely Zanon Boito | Ondřej Bojar | Roldano Cattoni | Anna Currey | Georgiana Dinu | Kevin Duh | Maha Elbayad | Clara Emmanuel | Yannick Estève | Marcello Federico | Christian Federmann | Souhir Gahbiche | Hongyu Gong | Roman Grundkiewicz | Barry Haddow | Benjamin Hsu | Dávid Javorský | Vĕra Kloudová | Surafel Lakew | Xutai Ma | Prashant Mathur | Paul McNamee | Kenton Murray | Maria Nǎdejde | Satoshi Nakamura | Matteo Negri | Jan Niehues | Xing Niu | John Ortega | Juan Pino | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Marco Turchi | Yogesh Virkar | Alexander Waibel | Changhan Wang | Shinji Watanabe
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.

pdf bib
ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks
Marcely Zanon Boito | John Ortega | Hugo Riguidel | Antoine Laurent | Loïc Barrault | Fethi Bougares | Firas Chaabani | Ha Nguyen | Florentin Barbier | Souhir Gahbiche | Yannick Estève
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation. For the Tunisian Arabic-English dataset (low-resource and dialect tracks), we build an end-to-end model as our joint primary submission, and compare it against cascaded models that leverage a large fine-tuned wav2vec 2.0 model for ASR. Our results show that in our settings pipeline approaches are still very competitive, and that with the use of transfer learning, they can outperform end-to-end models for speech translation (ST). For the Tamasheq-French dataset (low-resource track) our primary submission leverages intermediate representations from a wav2vec 2.0 model trained on 234 hours of Tamasheq audio, while our contrastive model uses a French phonetic transcription of the Tamasheq audio as input in a Conformer speech translation architecture jointly trained on automatic speech recognition, ST and machine translation losses. Our results highlight that self-supervised models trained on smaller sets of target data are more effective to low-resource end-to-end ST fine-tuning, compared to large off-the-shelf models. Results also illustrate that even approximate phonetic transcriptions can improve ST scores.

pdf bib
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
Yannick Estève | Tania Jiménez | Titouan Parcollet | Marcely Zanon Boito
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

pdf bib
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 2 : 24e Rencontres Etudiants Chercheurs en Informatique pour le TAL (RECITAL)
Yannick Estève | Tania Jiménez | Titouan Parcollet | Marcely Zanon Boito
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 2 : 24e Rencontres Etudiants Chercheurs en Informatique pour le TAL (RECITAL)

pdf bib
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 3 : Démonstrations
Yannick Estève | Tania Jiménez | Titouan Parcollet | Marcely Zanon Boito
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 3 : Démonstrations

pdf bib
Speech Resources in the Tamasheq Language
Marcely Zanon Boito | Fethi Bougares | Florentin Barbier | Souhir Gahbiche | Loïc Barrault | Mickael Rouvier | Yannick Estève
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper we present two datasets for Tamasheq, a developing language mainly spoken in Mali and Niger. These two datasets were made available for the IWSLT 2022 low-resource speech translation track, and they consist of collections of radio recordings from daily broadcast news in Niger (Studio Kalangou) and Mali (Studio Tamani). We share (i) a massive amount of unlabeled audio data (671 hours) in five languages: French from Niger, Fulfulde, Hausa, Tamasheq and Zarma, and (ii) a smaller 17 hours parallel corpus of audio recordings in Tamasheq, with utterance-level translations in the French language. All this data is shared under the Creative Commons BY-NC-ND 3.0 license. We hope these resources will inspire the speech community to develop and benchmark models using the Tamasheq language.

pdf bib
Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings
Marcely Zanon Boito | Bolaji Yusuf | Lucas Ondel | Aline Villavicencio | Laurent Besacier
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

Documenting languages helps to prevent the extinction of endangered dialects - many of which are otherwise expected to disappear by the end of the century. When documenting oral languages, unsupervised word segmentation (UWS) from speech is a useful, yet challenging, task. It consists in producing time-stamps for slicing utterances into smaller segments corresponding to words, being performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech discretization models. These discretization models are trained using raw speech only, producing discrete speech units that can be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural approaches, with regards to the exploitability of the produced units for UWS. For the UWS task, we experiment with two models, using as our target language the Mboshi (Bantu C25), an unwritten language from Congo-Brazzaville. Additionally, we report results for Finnish, Hungarian, Romanian and Russian in equally low-resource settings, using only 4 hours of speech. Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be necessary to adapt them to limit sequence length. We obtain our best UWS results by using Bayesian models that produce high quality, yet compressed, discrete representations of the input speech signal.

2020

pdf bib
MaSS: A Large and Clean Multilingual Corpus of Sentence-aligned Spoken Utterances Extracted from the Bible
Marcely Zanon Boito | William Havard | Mahault Garnerin | Éric Le Ferrand | Laurent Besacier
Proceedings of the Twelfth Language Resources and Evaluation Conference

The CMU Wilderness Multilingual Speech Dataset (Black, 2019) is a newly published multilingual speech dataset based on recorded readings of the New Testament. It provides data to build Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) models for potentially 700 languages. However, the fact that the source content (the Bible) is the same for all the languages is not exploited to date. Therefore, this article proposes to add multilingual links between speech segments in different languages, and shares a large and clean dataset of 8,130 parallel spoken utterances across 8 languages (56 language pairs). We name this corpus MaSS (Multilingual corpus of Sentence-aligned Spoken utterances). The covered languages (Basque, English, Finnish, French, Hungarian, Romanian, Russian and Spanish) allow researches on speech-to-speech alignment as well as on translation for typologically different language pairs. The quality of the final corpus is attested by human evaluation performed on a corpus subset (100 utterances, 8 language pairs). Lastly, we showcase the usefulness of the final product on a bilingual speech retrieval task.

pdf bib
Investigating Language Impact in Bilingual Approaches for Computational Language Documentation
Marcely Zanon Boito | Aline Villavicencio | Laurent Besacier
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

For endangered languages, data collection campaigns have to accommodate the challenge that many of them are from oral tradition, and producing transcriptions is costly. Therefore, it is fundamental to translate them into a widely spoken language to ensure interpretability of the recordings. In this paper we investigate how the choice of translation language affects the posterior documentation work and potential automatic approaches which will work on top of the produced bilingual corpus. For answering this question, we use the MaSS multilingual speech corpus (Boito et al., 2020) for creating 56 bilingual pairs that we apply to the task of low-resource unsupervised word segmentation and alignment. Our results highlight that the choice of language for translation influences the word segmentation performance, and that different lexicons are learned by using different aligned translations. Lastly, this paper proposes a hybrid approach for bilingual word segmentation, combining boundary clues extracted from a non-parametric Bayesian model (Goldwater et al., 2009a) with the attentional word segmentation neural model from Godard et al. (2018). Our results suggest that incorporating these clues into the neural models’ input representation increases their translation and alignment quality, specially for challenging language pairs.

2018

pdf bib
A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments
Pierre Godard | Gilles Adda | Martine Adda-Decker | Juan Benjumea | Laurent Besacier | Jamison Cooper-Leavitt | Guy-Noel Kouarata | Lori Lamel | Hélène Maynard | Markus Mueller | Annie Rialland | Sebastian Stueker | François Yvon | Marcely Zanon-Boito
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)