Marco Antonio Stranisci


2022

pdf bib
Guidelines and a Corpus for Extracting Biographical Events
Marco Antonio Stranisci | Enrico Mensa | Rossana Damiano | Daniele Radicioni | Ousmane Diakite
Proceedings of the 18th Joint ACL - ISO Workshop on Interoperable Semantic Annotation within LREC2022

Despite biographies are widely spread within the Semantic Web, resources and approaches to automatically extract biographical events are limited. Such limitation reduces the amount of structured, machine-readable biographical information, especially about people belonging to underrepresented groups. Our work challenges this limitation by providing a set of guidelines for the semantic annotation of life events. The guidelines are designed to be interoperable with existing ISO-standards for semantic annotation: ISO-TimeML (SO-24617-1), and SemAF (ISO-24617-4). Guidelines were tested through an annotation task of Wikipedia biographies of underrepresented writers, namely authors born in non-Western countries, migrants, or belonging to ethnic minorities. 1,000 sentences were annotated by 4 annotators with an average Inter-Annotator Agreement of 0.825. The resulting corpus was mapped on OntoNotes. Such mapping allowed to to expand our corpus, showing that already existing resources may be exploited for the biographical event extraction task.

pdf bib
O-Dang! The Ontology of Dangerous Speech Messages
Marco Antonio Stranisci | Simona Frenda | Mirko Lai | Oscar Araque | Alessandra Teresa Cignarella | Valerio Basile | Cristina Bosco | Viviana Patti
Proceedings of the 2nd Workshop on Sentiment Analysis and Linguistic Linked Data

Inside the NLP community there is a considerable amount of language resources created, annotated and released every day with the aim of studying specific linguistic phenomena. Despite a variety of attempts in order to organize such resources has been carried on, a lack of systematic methods and of possible interoperability between resources are still present. Furthermore, when storing linguistic information, still nowadays, the most common practice is the concept of “gold standard”, which is in contrast with recent trends in NLP that aim at stressing the importance of different subjectivities and points of view when training machine learning and deep learning methods. In this paper we present O-Dang!: The Ontology of Dangerous Speech Messages, a systematic and interoperable Knowledge Graph (KG) for the collection of linguistic annotated data. O-Dang! is designed to gather and organize Italian datasets into a structured KG, according to the principles shared within the Linguistic Linked Open Data community. The ontology has also been designed to account a perspectivist approach, since it provides a model for encoding both gold standard and single-annotator labels in the KG. The paper is structured as follows. In Section 1 the motivations of our work are outlined. Section 2 describes the O-Dang! Ontology, that provides a common semantic model for the integration of datasets in the KG. The Ontology Population stage with information about corpora, users, and annotations is presented in Section 3. Finally, in Section 4 an analysis of offensiveness across corpora is provided as a first case study for the resource.

pdf bib
APPReddit: a Corpus of Reddit Posts Annotated for Appraisal
Marco Antonio Stranisci | Simona Frenda | Eleonora Ceccaldi | Valerio Basile | Rossana Damiano | Viviana Patti
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Despite the large number of computational resources for emotion recognition, there is a lack of data sets relying on appraisal models. According to Appraisal theories, emotions are the outcome of a multi-dimensional evaluation of events. In this paper, we present APPReddit, the first corpus of non-experimental data annotated according to this theory. After describing its development, we compare our resource with enISEAR, a corpus of events created in an experimental setting and annotated for appraisal. Results show that the two corpora can be mapped notwithstanding different typologies of data and annotations schemes. A SVM model trained on APPReddit predicts four appraisal dimensions without significant loss. Merging both corpora in a single training set increases the prediction of 3 out of 4 dimensions. Such findings pave the way to a better performing classification model for appraisal prediction.