Marco Marelli


2024

pdf bib
Meaning Beyond Lexicality: Capturing Pseudoword Definitions with Language Models
Andrea Gregor de Varda | Daniele Gatti | Marco Marelli | Fritz Günther
Computational Linguistics, Volume 50, Issue 4 - December 2024

Pseudowords such as “knackets” or “spechy”—letter strings that are consistent with the orthotactical rules of a language but do not appear in its lexicon—are traditionally considered to be meaningless, and used as such in empirical studies. However, recent studies that show specific semantic patterns associated with these words as well as semantic effects on human pseudoword processing have cast doubt on this view. While these studies suggest that pseudowords have meanings, they provide only extremely limited insight as to whether humans are able to ascribe explicit and declarative semantic content to unfamiliar word forms. In the present study, we utilized an exploratory-confirmatory study design to examine this question. In a first exploratory study, we started from a pre-existing dataset of words and pseudowords alongside human-generated definitions for these items. Using 18 different language models, we showed that the definitions actually produced for (pseudo)words were closer to their respective (pseudo)words than the definitions for the other items. Based on these initial results, we conducted a second, pre-registered, high-powered confirmatory study collecting a new, controlled set of (pseudo)word interpretations. This second study confirmed the results of the first one. Taken together, these findings support the idea that meaning construction is supported by a flexible form-to-meaning mapping system based on statistical regularities in the language environment that can accommodate novel lexical entries as soon as they are encountered.

pdf bib
Locally Biased Transformers Better Align with Human Reading Times
Andrea De Varda | Marco Marelli
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Recent psycholinguistic theories emphasize the interdependence between linguistic expectations and memory limitations in human language processing. We modify the self-attention mechanism of a transformer model to simulate a lossy context representation, biasing the model’s predictions to give additional weight to the local linguistic context. We show that surprisal estimates from our locally-biased model generally provide a better fit to human psychometric data, underscoring the sensitivity of the human parser to local linguistic information.

pdf bib
The Emergence of Semantic Units in Massively Multilingual Models
Andrea Gregor de Varda | Marco Marelli
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Massively multilingual models can process text in several languages relying on a shared set of parameters; however, little is known about the encoding of multilingual information in single network units. In this work, we study how two semantic variables, namely valence and arousal, are processed in the latent dimensions of mBERT and XLM-R across 13 languages. We report a significant cross-lingual overlap in the individual neurons processing affective information, which is more pronounced when considering XLM-R vis-à-vis mBERT. Furthermore, we uncover a positive relationship between cross-lingual alignment and performance, where the languages that rely more heavily on a shared cross-lingual neural substrate achieve higher performance scores in semantic encoding.

2023

pdf bib
Scaling in Cognitive Modelling: a Multilingual Approach to Human Reading Times
Andrea de Varda | Marco Marelli
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Neural language models are increasingly valued in computational psycholinguistics, due to their ability to provide conditional probability distributions over the lexicon that are predictive of human processing times. Given the vast array of available models, it is of both theoretical and methodological importance to assess what features of a model influence its psychometric quality. In this work we focus on parameter size, showing that larger Transformer-based language models generate probabilistic estimates that are less predictive of early eye-tracking measurements reflecting lexical access and early semantic integration. However, relatively bigger models show an advantage in capturing late eye-tracking measurements that reflect the full semantic and syntactic integration of a word into the current language context. Our results are supported by eye movement data in ten languages and consider four models, spanning from 564M to 4.5B parameters.

pdf bib
Data-driven Cross-lingual Syntax: An Agreement Study with Massively Multilingual Models
Andrea Gregor de Varda | Marco Marelli
Computational Linguistics, Volume 49, Issue 2 - June 2023

Massively multilingual models such as mBERT and XLM-R are increasingly valued in Natural Language Processing research and applications, due to their ability to tackle the uneven distribution of resources available for different languages. The models’ ability to process multiple languages relying on a shared set of parameters raises the question of whether the grammatical knowledge they extracted during pre-training can be considered as a data-driven cross-lingual grammar. The present work studies the inner workings of mBERT and XLM-R in order to test the cross-lingual consistency of the individual neural units that respond to a precise syntactic phenomenon, that is, number agreement, in five languages (English, German, French, Hebrew, Russian). We found that there is a significant overlap in the latent dimensions that encode agreement across the languages we considered. This overlap is larger (a) for long- vis-à-vis short-distance agreement and (b) when considering XLM-R as compared to mBERT, and peaks in the intermediate layers of the network. We further show that a small set of syntax-sensitive neurons can capture agreement violations across languages; however, their contribution is not decisive in agreement processing.

2022

pdf bib
The Effects of Surprisal across Languages: Results from Native and Non-native Reading
Andrea de Varda | Marco Marelli
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

It is well known that the surprisal of an upcoming word, as estimated by language models, is a solid predictor of reading times (Smith and Levy, 2013). However, most of the studies that support this view are based on English and few other Germanic languages, leaving an open question as to the cross-lingual generalizability of such findings. Moreover, they tend to consider only the best-performing eye-tracking measure, which might conflate the effects of predictive and integrative processing. Furthermore, it is not clear whether prediction plays a role in non-native language processing in bilingual individuals (Grüter et al., 2014). We approach these problems at large scale, extracting surprisal estimates from mBERT, and assessing their psychometric predictive power on the MECO corpus, a cross-linguistic dataset of eye movement behavior in reading (Siegelman et al., 2022; Kuperman et al., 2020). We show that surprisal is a strong predictor of reading times across languages and fixation measurements, and that its effects in L2 are weaker with respect to L1.

2021

pdf bib
SWEAT: Scoring Polarization of Topics across Different Corpora
Federico Bianchi | Marco Marelli | Paolo Nicoli | Matteo Palmonari
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Understanding differences of viewpoints across corpora is a fundamental task for computational social sciences. In this paper, we propose the Sliced Word Embedding Association Test (SWEAT), a novel statistical measure to compute the relative polarization of a topical wordset across two distributional representations. To this end, SWEAT uses two additional wordsets, deemed to have opposite valence, to represent two different poles. We validate our approach and illustrate a case study to show the usefulness of the introduced measure.

2017

pdf bib
Be Precise or Fuzzy: Learning the Meaning of Cardinals and Quantifiers from Vision
Sandro Pezzelle | Marco Marelli | Raffaella Bernardi
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

People can refer to quantities in a visual scene by using either exact cardinals (e.g. one, two, three) or natural language quantifiers (e.g. few, most, all). In humans, these two processes underlie fairly different cognitive and neural mechanisms. Inspired by this evidence, the present study proposes two models for learning the objective meaning of cardinals and quantifiers from visual scenes containing multiple objects. We show that a model capitalizing on a ‘fuzzy’ measure of similarity is effective for learning quantifiers, whereas the learning of exact cardinals is better accomplished when information about number is provided.

2014

pdf bib
A SICK cure for the evaluation of compositional distributional semantic models
Marco Marelli | Stefano Menini | Marco Baroni | Luisa Bentivogli | Raffaella Bernardi | Roberto Zamparelli
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Shared and internationally recognized benchmarks are fundamental for the development of any computational system. We aim to help the research community working on compositional distributional semantic models (CDSMs) by providing SICK (Sentences Involving Compositional Knowldedge), a large size English benchmark tailored for them. SICK consists of about 10,000 English sentence pairs that include many examples of the lexical, syntactic and semantic phenomena that CDSMs are expected to account for, but do not require dealing with other aspects of existing sentential data sets (idiomatic multiword expressions, named entities, telegraphic language) that are not within the scope of CDSMs. By means of crowdsourcing techniques, each pair was annotated for two crucial semantic tasks: relatedness in meaning (with a 5-point rating scale as gold score) and entailment relation between the two elements (with three possible gold labels: entailment, contradiction, and neutral). The SICK data set was used in SemEval-2014 Task 1, and it freely available for research purposes.

pdf bib
SemEval-2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment
Marco Marelli | Luisa Bentivogli | Marco Baroni | Raffaella Bernardi | Stefano Menini | Roberto Zamparelli
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)

2013

pdf bib
Compositional-ly Derived Representations of Morphologically Complex Words in Distributional Semantics
Angeliki Lazaridou | Marco Marelli | Roberto Zamparelli | Marco Baroni
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
A relatedness benchmark to test the role of determiners in compositional distributional semantics
Raffaella Bernardi | Georgiana Dinu | Marco Marelli | Marco Baroni
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)