Margot Fonteyne


2022

pdf bib
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
Helena Moniz | Lieve Macken | Andrew Rufener | Loïc Barrault | Marta R. Costa-jussà | Christophe Declercq | Maarit Koponen | Ellie Kemp | Spyridon Pilos | Mikel L. Forcada | Carolina Scarton | Joachim Van den Bogaert | Joke Daems | Arda Tezcan | Bram Vanroy | Margot Fonteyne
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

pdf bib
Writing in a second Language with Machine translation (WiLMa)
Margot Fonteyne | Maribel Montero Perez | Joke Daems | Lieve Macken
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

The WiLMa project aims to assess the effects of using machine translation (MT) tools on the writing processes of second language (L2) learners of varying proficiency. Particular attention is given to individual variation in learners’ tool use.

pdf bib
GECO-MT: The Ghent Eye-tracking Corpus of Machine Translation
Toon Colman | Margot Fonteyne | Joke Daems | Nicolas Dirix | Lieve Macken
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In the present paper, we describe a large corpus of eye movement data, collected during natural reading of a human translation and a machine translation of a full novel. This data set, called GECO-MT (Ghent Eye tracking Corpus of Machine Translation) expands upon an earlier corpus called GECO (Ghent Eye-tracking Corpus) by Cop et al. (2017). The eye movement data in GECO-MT will be used in future research to investigate the effect of machine translation on the reading process and the effects of various error types on reading. In this article, we describe in detail the materials and data collection procedure of GECO-MT. Extensive information on the language proficiency of our participants is given, as well as a comparison with the participants of the original GECO. We investigate the distribution of a selection of important eye movement variables and explore the possibilities for future analyses of the data. GECO-MT is freely available at https://www.lt3.ugent.be/resources/geco-mt.

2020

pdf bib
Assessing the Comprehensibility of Automatic Translations (ArisToCAT)
Lieve Macken | Margot Fonteyne | Arda Tezcan | Joke Daems
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

The ArisToCAT project aims to assess the comprehensibility of ‘raw’ (unedited) MT output for readers who can only rely on the MT output. In this project description, we summarize the main results of the project and present future work.

pdf bib
Literary Machine Translation under the Magnifying Glass: Assessing the Quality of an NMT-Translated Detective Novel on Document Level
Margot Fonteyne | Arda Tezcan | Lieve Macken
Proceedings of the Twelfth Language Resources and Evaluation Conference

Several studies (covering many language pairs and translation tasks) have demonstrated that translation quality has improved enormously since the emergence of neural machine translation systems. This raises the question whether such systems are able to produce high-quality translations for more creative text types such as literature and whether they are able to generate coherent translations on document level. Our study aimed to investigate these two questions by carrying out a document-level evaluation of the raw NMT output of an entire novel. We translated Agatha Christie’s novel The Mysterious Affair at Styles with Google’s NMT system from English into Dutch and annotated it in two steps: first all fluency errors, then all accuracy errors. We report on the overall quality, determine the remaining issues, compare the most frequent error types to those in general-domain MT, and investigate whether any accuracy and fluency errors co-occur regularly. Additionally, we assess the inter-annotator agreement on the first chapter of the novel.