Maria Wang


2023

pdf bib
An Efficient Conversational Smart Compose System
Yun Zhu | Xiayu Chen | Lei Shu | Bowen Tan | Xinying Song | Lijuan Liu | Maria Wang | Jindong Chen | Ning Ruan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Online conversation is a ubiquitous way to share information and connect everyone but repetitive idiomatic text typing takes users a lot of time. This paper demonstrates a simple yet effective cloud based smart compose system to improve human-to-human conversation efficiency. Heuristics from different perspectives are designed to achieve the best trade-off between quality and latency. From the modeling side, the decoder-only model exploited the previous turns of conversational history in a computation lightweight manner. Besides, a novel phrase tokenizer is proposed to reduce latency without losing the composing quality further. Additionally, the caching mechanism is applied to the serving framework. The demo video of the system is available at https://youtu.be/U1KXkaqr60g.We open-sourced our phrase tokenizer in https://github.com/tensorflow/text.

2022

pdf bib
Towards Better Semantic Understanding of Mobile Interfaces
Srinivas Sunkara | Maria Wang | Lijuan Liu | Gilles Baechler | Yu-Chung Hsiao | Jindong Chen | Abhanshu Sharma | James W. W. Stout
Proceedings of the 29th International Conference on Computational Linguistics

Improving the accessibility and automation capabilities of mobile devices can have a significant positive impact on the daily lives of countless users. To stimulate research in this direction, we release a human-annotated dataset with approximately 500k unique annotations aimed at increasing the understanding of the functionality of UI elements. This dataset augments images and view hierarchies from RICO, a large dataset of mobile UIs, with annotations for icons based on their shapes and semantics, and associations between different elements and their corresponding text labels, resulting in a significant increase in the number of UI elements and the categories assigned to them. We also release models using image-only and multimodal inputs; we experiment with various architectures and study the benefits of using multimodal inputs on the new dataset. Our models demonstrate strong performance on an evaluation set of unseen apps, indicating their generalizability to newer screens. These models, combined with the new dataset, can enable innovative functionalities like referring to UI elements by their labels, improved coverage and better semantics for icons etc., which would go a long way in making UIs more usable for everyone.

2021

pdf bib
PhotoChat: A Human-Human Dialogue Dataset With Photo Sharing Behavior For Joint Image-Text Modeling
Xiaoxue Zang | Lijuan Liu | Maria Wang | Yang Song | Hao Zhang | Jindong Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We present a new human-human dialogue dataset - PhotoChat, the first dataset that casts light on the photo sharing behavior in online messaging. PhotoChat contains 12k dialogues, each of which is paired with a user photo that is shared during the conversation. Based on this dataset, we propose two tasks to facilitate research on image-text modeling: a photo-sharing intent prediction task that predicts whether one intends to share a photo in the next conversation turn, and a photo retrieval task that retrieves the most relevant photo according to the dialogue context. In addition, for both tasks, we provide baseline models using the state-of-the-art models and report their benchmark performances. The best image retrieval model achieves 10.4% recall@1 (out of 1000 candidates) and the best photo intent prediction model achieves 58.1% F1 score, indicating that the dataset presents interesting yet challenging real-world problems. We are releasing PhotoChat to facilitate future research work among the community.