We present the results of the ninth edition of the Biomedical Translation Task at WMT’24. We released test sets for six language pairs, namely, French, German, Italian, Portuguese, Russian, and Spanish, from and into English. Eachtest set consists of 50 abstracts from PubMed. Differently from previous years, we did not split abstracts into sentences. We received submissions from five teams, and for almost all language directions. We used a baseline/comparison system based on Llama 3.1 and share the source code at https://github.com/cgrozea/wmt24biomed-ref.
The use of seed articles in information retrieval provides many advantages, such as a longercontext and more details about the topic being searched for. Given a seed article (i.e., a PMID), PubMed provides a pre-compiled list of similar articles to support the user in finding equivalent papers in the biomedical literature. We aimed at performing a quantitative evaluation of the PubMed Similar Articles based on three existing biomedical text similarity datasets, namely, RELISH, TREC-COVID, and SMAFIRA-c. Further, we carried out a survey and an evaluation of various text similarity methods on these three datasets. Our experiments considered the original title and abstract from PubMed as well as automatically detected sections and manually annotated relevant sentences. We provide an overview about which methods better performfor each dataset and compare them to the ranking in PubMed similar articles. While resultsvaried considerably among the datasets, we were able to obtain a better performance thanPubMed for all of them. Datasets and source codes are available at: https://github.com/mariananeves/reranking
We describe our participation on the Multi-evidence Natural Language Inference for Clinical Trial Data (NLI4CT) of SemEval’23. The organizers provided a collection of clinical trials as training data and a set of statements, which can be related to either a single trial or to a comparison of two trials. The task consisted of two sub-tasks: (i) textual entailment (Task 1) for predicting whether the statement is supported (Entailment) or not (Contradiction) by the corresponding trial(s); and (ii) evidence retrieval (Task 2) for selecting the evidences (sentences in the trials) that support the decision made for Task 1. We built a model based on a sentence-based BERT similarity model which was pre-trained on ClinicalBERT embeddings. Our best results on the official test sets were f-scores of 0.64 and 0.67 for Tasks 1 and 2, respectively.
We present an overview of the Biomedical Translation Task that was part of the Eighth Conference on Machine Translation (WMT23). The aim of the task was the automatic translation of biomedical abstracts from the PubMed database. It included twelve language directions, namely, French, Spanish, Portuguese, Italian, German, and Russian, from and into English. We received submissions from 18 systems and for all the test sets that we released. Our comparison system was based on ChatGPT 3.5 and performed very well in comparison to many of the submissions.
In the seventh edition of the WMT Biomedical Task, we addressed a total of seven languagepairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian. This year’s test sets covered three types of biomedical text genre. In addition to scientific abstracts and terminology items used in previous editions, we released test sets of clinical cases. The evaluation of clinical cases translations were given special attention by involving clinicians in the preparation of reference translations and manual evaluation. For the main MEDLINE test sets, we received a total of 609 submissions from 37 teams. For the ClinSpEn sub-task, we had the participation of five teams.
In the sixth edition of the WMT Biomedical Task, we addressed a total of eight language pairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian, and English/Basque. Further, our tests were composed of three types of textual test sets. New to this year, we released a test set of summaries of animal experiments, in addition to the test sets of scientific abstracts and terminologies. We received a total of 107 submissions from 15 teams from 6 countries.
Background: Parallel corpora are used to train and evaluate machine translation systems. To alleviate the cost of producing parallel resources for evaluation campaigns, existing corpora are leveraged. However, little information may be available about the methods used for producing the corpus, including translation direction. Objective: To gain insight on MEDLINE parallel corpus used in the biomedical task at the Workshop on Machine Translation in 2019 (WMT 2019). Material and Methods: Contact information for the authors of MEDLINE articles included in the English/Spanish (EN/ES), English/French (EN/FR), and English/Portuguese (EN/PT) WMT 2019 test sets was obtained from PubMed and publisher websites. The authors were asked about their abstract writing practices in a survey. Results: The response rate was above 20%. Authors reported that they are mainly native speakers of languages other than English. Although manual translation, sometimes via professional translation services, was commonly used for abstract translation, authors of articles in the EN/ES and EN/PT sets also relied on post-edited machine translation. Discussion: This study provides a characterization of MEDLINE authors’ language skills and abstract writing practices. Conclusion: The information collected in this study will be used to inform test set design for the next WMT biomedical task.
Machine translation of scientific abstracts and terminologies has the potential to support health professionals and biomedical researchers in some of their activities. In the fifth edition of the WMT Biomedical Task, we addressed a total of eight language pairs. Five language pairs were previously addressed in past editions of the shared task, namely, English/German, English/French, English/Spanish, English/Portuguese, and English/Chinese. Three additional languages pairs were also introduced this year: English/Russian, English/Italian, and English/Basque. The task addressed the evaluation of both scientific abstracts (all language pairs) and terminologies (English/Basque only). We received submissions from a total of 20 teams. For recurring language pairs, we observed an improvement in the translations in terms of automatic scores and qualitative evaluations, compared to previous years.
Rhetorical elements from scientific publications provide a more structured view of the document and allow algorithms to focus on particular parts of the text. We surveyed the literature for previously proposed schemes for rhetorical elements and present an overview of its current state of the art. We also searched for available tools using these schemes and applied four tools for our particular task of ranking biomedical abstracts based on text similarity. Comparison of the tools with two strong baselines shows that the predictions provided by the ArguminSci tool can support our use case of mining alternative methods for animal experiments.
In the fourth edition of the WMT Biomedical Translation task, we considered a total of six languages, namely Chinese (zh), English (en), French (fr), German (de), Portuguese (pt), and Spanish (es). We performed an evaluation of automatic translations for a total of 10 language directions, namely, zh/en, en/zh, fr/en, en/fr, de/en, en/de, pt/en, en/pt, es/en, and en/es. We provided training data based on MEDLINE abstracts for eight of the 10 language pairs and test sets for all of them. In addition to that, we offered a new sub-task for the translation of terms in biomedical terminologies for the en/es language direction. Higher BLEU scores (close to 0.5) were obtained for the es/en, en/es and en/pt test sets, as well as for the terminology sub-task. After manual validation of the primary runs, some submissions were judged to be better than the reference translations, for instance, for de/en, en/es and es/en.
Automatic extraction of semantic relations from text can support finding relevant information from scientific publications. We describe our participation in Task 7 of SemEval-2018 for which we experimented with two relations extraction tools - jSRE and TEES - for the extraction and classification of six relation types. The results we obtained with TEES were significantly superior than those with jSRE (33.4% vs. 30.09% and 20.3% vs. 16%). Additionally, we utilized the model trained with TEES for extracting semantic relations from biomedical abstracts, for which we present a preliminary evaluation.
Question answering (QA) systems usually rely on advanced natural language processing components to precisely understand the questions and extract the answers. Semantic role labeling (SRL) is known to boost performance for QA, but its use for biomedical texts has not yet been fully studied. We analyzed the performance of three SRL tools (BioKIT, BIOSMILE and PathLSTM) on 1776 questions from the BioASQ challenge. We compared the systems regarding the coverage of the questions and snippets, as well as based on pre-defined criteria, such as easiness of installation, supported formats and usability. Finally, we integrated two of the tools in a simple QA system to further evaluate their performance over the official BioASQ test sets.
Machine translation enables the automatic translation of textual documents between languages and can facilitate access to information only available in a given language for non-speakers of this language, e.g. research results presented in scientific publications. In this paper, we provide an overview of the Biomedical Translation shared task in the Workshop on Machine Translation (WMT) 2018, which specifically examined the performance of machine translation systems for biomedical texts. This year, we provided test sets of scientific publications from two sources (EDP and Medline) and for six language pairs (English with each of Chinese, French, German, Portuguese, Romanian and Spanish). We describe the development of the various test sets, the submissions that we received and the evaluations that we carried out. We obtained a total of 39 runs from six teams and some of this year’s BLEU scores were somewhat higher that last year’s, especially for teams that made use of biomedical resources or state-of-the-art MT algorithms (e.g. Transformer). Finally, our manual evaluation scored automatic translations higher than the reference translations for German and Spanish.
Factoid question answering (QA) has recently benefited from the development of deep learning (DL) systems. Neural network models outperform traditional approaches in domains where large datasets exist, such as SQuAD (ca. 100,000 questions) for Wikipedia articles. However, these systems have not yet been applied to QA in more specific domains, such as biomedicine, because datasets are generally too small to train a DL system from scratch. For example, the BioASQ dataset for biomedical QA comprises less then 900 factoid (single answer) and list (multiple answers) QA instances. In this work, we adapt a neural QA system trained on a large open-domain dataset (SQuAD, source) to a biomedical dataset (BioASQ, target) by employing various transfer learning techniques. Our network architecture is based on a state-of-the-art QA system, extended with biomedical word embeddings and a novel mechanism to answer list questions. In contrast to existing biomedical QA systems, our system does not rely on domain-specific ontologies, parsers or entity taggers, which are expensive to create. Despite this fact, our systems achieve state-of-the-art results on factoid questions and competitive results on list questions.
This paper describes our submission to the 2017 BioASQ challenge. We participated in Task B, Phase B which is concerned with biomedical question answering (QA). We focus on factoid and list question, using an extractive QA model, that is, we restrict our system to output substrings of the provided text snippets. At the core of our system, we use FastQA, a state-of-the-art neural QA system. We extended it with biomedical word embeddings and changed its answer layer to be able to answer list questions in addition to factoid questions. We pre-trained the model on a large-scale open-domain QA dataset, SQuAD, and then fine-tuned the parameters on the BioASQ training set. With our approach, we achieve state-of-the-art results on factoid questions and competitive results on list questions.
Question answering (QA) can support physicians and biomedical researchers to find answers to their questions in the scientific literature. Such systems process large collections of documents in real time and include many natural language processing (NLP) procedures. We recently developed Olelo, a QA system for biomedicine which includes various NLP components, such as question processing, document and passage retrieval, answer processing and multi-document summarization. In this work, we present an evaluation of our system on the the fifth BioASQ challenge. We participated with the current state of the application and with an extension based on semantic role labeling that we are currently investigating. In addition to the BioASQ evaluation, we compared our system to other on-line biomedical QA systems in terms of the response time and the quality of the answers.
Parallel collections of documents are crucial resources for training and evaluating machine translation (MT) systems. Even though large collections are available for certain domains and language pairs, these are still scarce in the biomedical domain. We developed a parallel corpus of clinical trials in Portuguese and English. The documents are derived from the Brazilian Clinical Trials Registry and the corpus currently contains a total of 1188 documents. In this paper, we describe the corpus construction and discuss the quality of the translation and the sentence alignment that we obtained.
The biomedical scientific literature is a rich source of information not only in the English language, for which it is more abundant, but also in other languages, such as Portuguese, Spanish and French. We present the first freely available parallel corpus of scientific publications for the biomedical domain. Documents from the ”Biological Sciences” and ”Health Sciences” categories were retrieved from the Scielo database and parallel titles and abstracts are available for the following language pairs: Portuguese/English (about 86,000 documents in total), Spanish/English (about 95,000 documents) and French/English (about 2,000 documents). Additionally, monolingual data was also collected for all four languages. Sentences in the parallel corpus were automatically aligned and a manual analysis of 200 documents by native experts found that a minimum of 79% of sentences were correctly aligned in all language pairs. We demonstrate the utility of the corpus by running baseline machine translation experiments. We show that for all language pairs, a statistical machine translation system trained on the parallel corpora achieves performance that rivals or exceeds the state of the art in the biomedical domain. Furthermore, the corpora are currently being used in the biomedical task in the First Conference on Machine Translation (WMT’16).
Question answering (QA) systems need to provide exact answers for the questions that are posed to the system. However, this can only be achieved through a precise processing of the question. During this procedure, one important step is the detection of the expected type of answer that the system should provide by extracting the headword of the questions and identifying its semantic type. We have annotated the headword and assigned UMLS semantic types to 643 factoid/list questions from the BioASQ training data. We present statistics on the corpus and a preliminary evaluation in baseline experiments. We also discuss the challenges on both the manual annotation and the automatic detection of the headwords and the semantic types. We believe that this is a valuable resource for both training and evaluation of biomedical QA systems. The corpus is available at: https://github.com/mariananeves/BioMedLAT.
The increasing amount of biomedical information that is available for researchers and clinicians makes it harder to quickly find the right information. Automatic summarization of multiple texts can provide summaries specific to the user’s information needs. In this paper we look into the use named-entity recognition for graph-based summarization. We extend the LexRank algorithm with information about named entities and present EntityRank, a multi-document graph-based summarization algorithm that is solely based on named entities. We evaluate our system on a datasets of 1009 human written summaries provided by BioASQ and on 1974 gene summaries, fetched from the Entrez Gene database. The results show that the addition of named-entity information increases the performance of graph-based summarizers and that the EntityRank significantly outperforms the other methods with regard to the ROUGE measures.