Marie Skrovec
2020
Chunk Different Kind of Spoken Discourse: Challenges for Machine Learning
Iris Eshkol-Taravella
|
Mariame Maarouf
|
Flora Badin
|
Marie Skrovec
|
Isabelle Tellier
Proceedings of the Twelfth Language Resources and Evaluation Conference
This paper describes the development of a chunker for spoken data by supervised machine learning using the CRFs, based on a small reference corpus composed of two kinds of discourse: prepared monologue vs. spontaneous talk in interaction. The methodology considers the specific character of the spoken data. The machine learning uses the results of several available taggers, without correcting the results manually. Experiments show that the discourse type (monologue vs. free talk), the speech nature (spontaneous vs. prepared) and the corpus size can influence the results of the machine learning process and must be considered while interpreting the results.
2019
Chunker différents types de discours oraux : défis pour l’apprentissage automatique (Chunking different spoken speech types : challenges for machine learning)
Iris Eshkol-Taravella
|
Mariame Maarouf
|
Marie Skrovec
|
Flora Badin
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts
Le travail décrit le développement d’un chunker pour l’oral par apprentissage supervisé avec les CRFs, à partir d’un corpus de référence de petite taille et composé de productions de nature différente : monologue préparé vs discussion spontanée. La méthodologie respecte les spécificités des données traitées. L’apprentissage tient compte des résultats proposés par différents étiqueteurs morpho-syntaxiques disponibles sans correction manuelle de leurs résultats. Les expériences montrent que le genre de discours (monologue vs discussion), la nature de discours (spontané vs préparé) et la taille du corpus peuvent influencer les résultats de l’apprentissage, ce qui confirme que la nature des données traitées est à prendre en considération dans l’interprétation des résultats.