Marine Delaborde


2023

pdf bib
Génération automatique de jeux de mots à base de prénoms
Mathieu Dehouck | Marine Delaborde
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 5 : démonstrations

Nous présentons un système automatique de génération de blagues au format « Monsieur et Madame ».Ces blagues seront ensuite rendues accessibles sur un site internet où les visiteurs seront invités à lesnoter. Le tout servira ensuite à créer un corpus pour des études ultérieures.

2022

pdf bib
Romanciers et romancières du XIXème siècle : une étude automatique du genre sur le corpus GIRLS (Male and female novelists : an automatic study of gender of authors and their characters )
Marco Naguib | Marine Delaborde | Blandine Andrault | Anaïs Bekolo | Olga Seminck
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Atelier TAL et Humanités Numériques (TAL-HN)

Cette étude porte sur les différences entre les romans français du XIXe siècle écrits par des hommes et ceux écrits par des femmes en trois étapes. Premièrement, nous observons que ces textes peuvent être distingués par apprentissage supervisé selon ce critère. Un modèle simple a un score de 99% d’exactitude sur cette tâche si d’autres œuvres de la même personne figurent dans le jeu d’entraînement, et de 72% d’exactitude sinon. Cette différence s’explique par le fait que le langage de l’individu est plus distinctif qu’un éventuel style propre au genre. Deuxièmement, notre étude textométrique met au jour des stéréotypes de genre chez les hommes et les femmes. Troisièmement, nous présentons un modèle de coréférence entraîné sur des textes littéraires pour étudier le genre des personnages. Nous montrons ainsi que les personnages féminins sont plus nombreux chez les femmes, et prennent généralement une place plus proéminente que chez les hommes.

2014

pdf bib
Facing the Identification Problem in Language-Related Scientific Data Analysis.
Joseph Mariani | Christopher Cieri | Gil Francopoulo | Patrick Paroubek | Marine Delaborde
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper describes the problems that must be addressed when studying large amounts of data over time which require entity normalization applied not to the usual genres of news or political speech, but to the genre of academic discourse about language resources, technologies and sciences. It reports on the normalization processes that had to be applied to produce data usable for computing statistics in three past studies on the LRE Map, the ISCA Archive and the LDC Bibliography. It shows the need for human expertise during normalization and the necessity to adapt the work to the study objectives. It investigates possible improvements for reducing the workload necessary to produce comparable results. Through this paper, we show the necessity to define and agree on international persistent and unique identifiers.