There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model’s temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs, including DTMs from large language models (LLMs). We also show that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs and LLMs, and guiding future research in this area.
Fine-tuning pretrained language models on task-specific data is a common practice in Natural Language Processing (NLP) applications. However, the number of pretrained models available to choose from can be very large, and it remains unclear how to select the optimal model without spending considerable amounts of computational resources, especially for the text domain. To address this problem, we introduce PsyMatrix, a novel framework designed to efficiently characterize text datasets. PsyMatrix evaluates multiple dimensions of text and discourse, producing interpretable, low-dimensional embeddings. Our framework has been tested using a meta-dataset repository that includes the performance of 24 pretrained large language models fine-tuned across 146 classification datasets. Using the proposed embeddings, we successfully developed a meta-learning system capable of recommending the most effective pretrained models (optimal and near-optimal) for fine-tuning on new datasets.
Evaluating Text Style Transfer (TST) is a complex task due to its multi-faceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nonetheless, it is uncertain whether and to what extent these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a viable alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST evaluation using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing efforts for more robust and diverse evaluation methods by standardizing and validating TST evaluation with LLMs.
Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.
There exist few text-specific methods for unsupervised anomaly detection, and for those that do exist, none utilize pre-trained models for distributed vector representations of words. In this paper we introduce a new anomaly detection method—Context Vector Data Description (CVDD)—which builds upon word embedding models to learn multiple sentence representations that capture multiple semantic contexts via the self-attention mechanism. Modeling multiple contexts enables us to perform contextual anomaly detection of sentences and phrases with respect to the multiple themes and concepts present in an unlabeled text corpus. These contexts in combination with the self-attention weights make our method highly interpretable. We demonstrate the effectiveness of CVDD quantitatively as well as qualitatively on the well-known Reuters, 20 Newsgroups, and IMDB Movie Reviews datasets.