Mark Rofin


2024

pdf bib
Why are Sensitive Functions Hard for Transformers?
Michael Hahn | Mark Rofin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Empirical studies have identified a range of learnability biases and limitations of transformers, such as a persistent difficulty in learning to compute simple formal languages such as PARITY, and a bias towards low-degree functions. However, theoretical understanding remains limited, with existing expressiveness theory either overpredicting or underpredicting realistic learning abilities. We prove that, under the transformer architecture, the loss landscape is constrained by the input-space sensitivity: Transformers whose output is sensitive to many parts of the input string inhabit isolated points in parameter space, leading to a low-sensitivity bias in generalization. We show theoretically and empirically that this theory unifies a broad array of empirical observations about the learning abilities and biases of transformers, such as their generalization bias towards low sensitivity and low degree, and difficulty in length generalization for PARITY. This shows that understanding transformers’ inductive biases requires studying not just their in-principle expressivity, but also their loss landscape.

2023

pdf bib
Vote’n’Rank: Revision of Benchmarking with Social Choice Theory
Mark Rofin | Vladislav Mikhailov | Mikhail Florinsky | Andrey Kravchenko | Tatiana Shavrina | Elena Tutubalina | Daniel Karabekyan | Ekaterina Artemova
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote’n’Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote’n’Rank’s procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.