Marta Bañón


2020

pdf bib
ParaCrawl: Web-Scale Acquisition of Parallel Corpora
Marta Bañón | Pinzhen Chen | Barry Haddow | Kenneth Heafield | Hieu Hoang | Miquel Esplà-Gomis | Mikel L. Forcada | Amir Kamran | Faheem Kirefu | Philipp Koehn | Sergio Ortiz Rojas | Leopoldo Pla Sempere | Gema Ramírez-Sánchez | Elsa Sarrías | Marek Strelec | Brian Thompson | William Waites | Dion Wiggins | Jaume Zaragoza
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We report on methods to create the largest publicly available parallel corpora by crawling the web, using open source software. We empirically compare alternative methods and publish benchmark data sets for sentence alignment and sentence pair filtering. We also describe the parallel corpora released and evaluate their quality and their usefulness to create machine translation systems.

pdf bib
Bifixer and Bicleaner: two open-source tools to clean your parallel data
Gema Ramírez-Sánchez | Jaume Zaragoza-Bernabeu | Marta Bañón | Sergio Ortiz Rojas
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

This paper shows the utility of two open-source tools designed for parallel data cleaning: Bifixer and Bicleaner. Already used to clean highly noisy parallel content from crawled multilingual websites, we evaluate their performance in a different scenario: cleaning publicly available corpora commonly used to train machine translation systems. We choose four English–Portuguese corpora which we plan to use internally to compute paraphrases at a later stage. We clean the four corpora using both tools, which are described in detail, and analyse the effect of some of the cleaning steps on them. We then compare machine translation training times and quality before and after cleaning these corpora, showing a positive impact particularly for the noisiest ones.

2018

pdf bib
Prompsit’s submission to WMT 2018 Parallel Corpus Filtering shared task
Víctor M. Sánchez-Cartagena | Marta Bañón | Sergio Ortiz-Rojas | Gema Ramírez
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes Prompsit Language Engineering’s submissions to the WMT 2018 parallel corpus filtering shared task. Our four submissions were based on an automatic classifier for identifying pairs of sentences that are mutual translations. A set of hand-crafted hard rules for discarding sentences with evident flaws were applied before the classifier. We explored different strategies for achieving a training corpus with diverse vocabulary and fluent sentences: language model scoring, an active-learning-inspired data selection algorithm and n-gram saturation. Our submissions were very competitive in comparison with other participants on the 100 million word training corpus.