Martin Renqiang Min


pdf bib
Retrieval, Analogy, and Composition: A framework for Compositional Generalization in Image Captioning
Zhan Shi | Hui Liu | Martin Renqiang Min | Christopher Malon | Li Erran Li | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.


pdf bib
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance
Pengyu Cheng | Martin Renqiang Min | Dinghan Shen | Christopher Malon | Yizhe Zhang | Yitong Li | Lawrence Carin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.


pdf bib
Learning Context-Sensitive Convolutional Filters for Text Processing
Dinghan Shen | Martin Renqiang Min | Yitong Li | Lawrence Carin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-sensitive filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.

pdf bib
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
Dinghan Shen | Guoyin Wang | Wenlin Wang | Martin Renqiang Min | Qinliang Su | Yizhe Zhang | Chunyuan Li | Ricardo Henao | Lawrence Carin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many deep learning architectures have been proposed to model the compositionality in text sequences, requiring substantial number of parameters and expensive computations. However, there has not been a rigorous evaluation regarding the added value of sophisticated compositional functions. In this paper, we conduct a point-by-point comparative study between Simple Word-Embedding-based Models (SWEMs), consisting of parameter-free pooling operations, relative to word-embedding-based RNN/CNN models. Surprisingly, SWEMs exhibit comparable or even superior performance in the majority of cases considered. Based upon this understanding, we propose two additional pooling strategies over learned word embeddings: (i) a max-pooling operation for improved interpretability; and (ii) a hierarchical pooling operation, which preserves spatial (n-gram) information within text sequences. We present experiments on 17 datasets encompassing three tasks: (i) (long) document classification; (ii) text sequence matching; and (iii) short text tasks, including classification and tagging.