Masaharu Yoshioka


2024

pdf bib
Coding Open-Ended Responses using Pseudo Response Generation by Large Language Models
Yuki Zenimoto | Ryo Hasegawa | Takehito Utsuro | Masaharu Yoshioka | Noriko Kando
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

Survey research using open-ended responses is an important method thatcontributes to the discovery of unknown issues and new needs. However,survey research generally requires time and cost-consuming manual dataprocessing, indicating that it is difficult to analyze large dataset.To address this issue, we propose an LLM-based method to automate partsof the grounded theory approach (GTA), a representative approach of thequalitative data analysis. We generated and annotated pseudo open-endedresponses, and used them as the training data for the coding proceduresof GTA. Through evaluations, we showed that the models trained withpseudo open-ended responses are quite effective compared with thosetrained with manually annotated open-ended responses. We alsodemonstrate that the LLM-based approach is highly efficient andcost-saving compared to human-based approach.

pdf bib
Aggregating Impressions on Celebrities and their Reasons from Microblog Posts and Web Search Pages
Hibiki Yokoyama | Rikuto Tsuchida | Kosei Buma | Sho Miyakawa | Takehito Utsuro | Masaharu Yoshioka
Proceedings of the 3rd Workshop on Knowledge Augmented Methods for NLP

This paper aims to augment fans’ ability to critique and exploreinformation related to celebrities of interest. First, we collect postsfrom X (formerly Twitter) that discuss matters related to specificcelebrities. For the collection of major impressions from these posts,we employ ChatGPT as a large language model (LLM) to analyze andsummarize key sentiments. Next, based on collected impressions, wesearch for Web pages and collect the content of the top 30 ranked pagesas the source for exploring the reasons behind those impressions. Oncethe Web page content collection is complete, we collect and aggregatedetailed reasons for the impressions on the celebrities from the contentof each page. For this part, we continue to use ChatGPT, enhanced bythe retrieval augmented generation (RAG) framework, to ensure thereliability of the collected results compared to relying solely on theprior knowledge of the LLM. Evaluation results by comparing a referencethat is manually collected and aggregated reasons with those predictedby ChatGPT revealed that ChatGPT achieves high accuracy in reasoncollection and aggregation. Furthermore, we compared the performance ofChatGPT with an existing model of mT5 in reason collection and confirmedthat ChatGPT exhibits superior performance.

2018

pdf bib
Measuring Beginner Friendliness of Japanese Web Pages explaining Academic Concepts by Integrating Neural Image Feature and Text Features
Hayato Shiokawa | Kota Kawaguchi | Bingcai Han | Takehito Utsuro | Yasuhide Kawada | Masaharu Yoshioka | Noriko Kando
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

Search engine is an important tool of modern academic study, but the results are lack of measurement of beginner friendliness. In order to improve the efficiency of using search engine for academic study, it is necessary to invent a technique of measuring the beginner friendliness of a Web page explaining academic concepts and to build an automatic measurement system. This paper studies how to integrate heterogeneous features such as a neural image feature generated from the image of the Web page by a variant of CNN (convolutional neural network) as well as text features extracted from the body text of the HTML file of the Web page. Integration is performed through the framework of the SVM classifier learning. Evaluation results show that heterogeneous features perform better than each individual type of features.

2014

pdf bib
Automatic Annotation of Parameters from Nanodevice Development Research Papers
Thaer M. Dieb | Masaharu Yoshioka | Shinjiroh Hara | Marcus C. Newton
Proceedings of the 4th International Workshop on Computational Terminology (Computerm)

2013

pdf bib
Time Series Topic Modeling and Bursty Topic Detection of Correlated News and Twitter
Daichi Koike | Yusuke Takahashi | Takehito Utsuro | Masaharu Yoshioka | Noriko Kando
Proceedings of the Sixth International Joint Conference on Natural Language Processing

2012

pdf bib
Cross-Lingual Topic Alignment in Time Series Japanese / Chinese News
Shuo Hu | Yusuke Takahashi | Liyi Zheng | Takehito Utsuro | Masaharu Yoshioka | Noriko Kando | Tomohiro Fukuhara | Hiroshi Nakagawa | Yoji Kiyota
Proceedings of the 26th Pacific Asia Conference on Language, Information, and Computation