Matan Vetzler


pdf bib
NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval
Uri Katz | Matan Vetzler | Amir Cohen | Yoav Goldberg
Findings of the Association for Computational Linguistics: EMNLP 2023

Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained—and intersectional—entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.

pdf bib
Reliable and Interpretable Drift Detection in Streams of Short Texts
Ella Rabinovich | Matan Vetzler | Samuel Ackerman | Ateret Anaby Tavor
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Data drift is the change in model input data that is one of the key factors leading to machine learning models performance degradation over time. Monitoring drift helps detecting these issues and preventing their harmful consequences. Meaningful drift interpretation is a fundamental step towards effective re-training of the model. In this study we propose an end-to-end framework for reliable model-agnostic change-point detection and interpretation in large task-oriented dialog systems, proven effective in multiple customer deployments. We evaluate our approach and demonstrate its benefits with a novel variant of intent classification training dataset, simulating customer requests to a dialog system. We make the data publicly available.


pdf bib
Gaining Insights into Unrecognized User Utterances in Task-Oriented Dialog Systems
Ella Rabinovich | Matan Vetzler | David Boaz | Vineet Kumar | Gaurav Pandey | Ateret Anaby Tavor
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

The rapidly growing market demand for automatic dialogue agents capable of goal-oriented behavior has caused many tech-industry leaders to invest considerable efforts into task-oriented dialog systems. The success of these systems is highly dependent on the accuracy of their intent identification – the process of deducing the goal or meaning of the user’s request and mapping it to one of the known intents for further processing. Gaining insights into unrecognized utterances – user requests the systems fails to attribute to a known intent – is therefore a key process in continuous improvement of goal-oriented dialog systems. We present an end-to-end pipeline for processing unrecognized user utterances, deployed in a real-world, commercial task-oriented dialog system, including a specifically-tailored clustering algorithm, a novel approach to cluster representative extraction, and cluster naming. We evaluated the proposed components, demonstrating their benefits in the analysis of unrecognized user requests.