Matthew E. Peters

Also published as: Matthew Peters


pdf bib
Tailor: Generating and Perturbing Text with Semantic Controls
Alexis Ross | Tongshuang Wu | Hao Peng | Matthew Peters | Matt Gardner
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Controlled text perturbation is useful for evaluating and improving model generalizability. However, current techniques rely on training a model for every target perturbation, which is expensive and hard to generalize. We present Tailor, a semantically-controlled text generation system. Tailor builds on a pretrained seq2seq model and produces textual outputs conditioned on control codes derived from semantic representations. We craft a set of operations to modify the control codes, which in turn steer generation towards targeted attributes. These operations can be further composed into higher-level ones, allowing for flexible perturbation strategies. We demonstrate the effectiveness of these perturbations in multiple applications. First, we use Tailor to automatically create high-quality contrast sets for four distinct natural language processing (NLP) tasks. These contrast sets contain fewer spurious artifacts and are complementary to manually annotated ones in their lexical diversity. Second, we show that Tailor perturbations can improve model generalization through data augmentation. Perturbing just ∼2% of training data leads to a 5.8-point gain on an NLI challenge set measuring reliance on syntactic heuristics.

pdf bib
Extracting Latent Steering Vectors from Pretrained Language Models
Nishant Subramani | Nivedita Suresh | Matthew Peters
Findings of the Association for Computational Linguistics: ACL 2022

Prior work on controllable text generation has focused on learning how to control language models through trainable decoding, smart-prompt design, or fine-tuning based on a desired objective. We hypothesize that the information needed to steer the model to generate a target sentence is already encoded within the model. Accordingly, we explore a different approach altogether: extracting latent vectors directly from pretrained language model decoders without fine-tuning. Experiments show that there exist steering vectors, which, when added to the hidden states of the language model, generate a target sentence nearly perfectly (> 99 BLEU) for English sentences from a variety of domains. We show that vector arithmetic can be used for unsupervised sentiment transfer on the Yelp sentiment benchmark, with performance comparable to models tailored to this task. We find that distances between steering vectors reflect sentence similarity when evaluated on a textual similarity benchmark (STS-B), outperforming pooled hidden states of models. Finally, we present an analysis of the intrinsic properties of the steering vectors. Taken together, our results suggest that frozen LMs can be effectively controlled through their latent steering space.


pdf bib
Competency Problems: On Finding and Removing Artifacts in Language Data
Matt Gardner | William Merrill | Jesse Dodge | Matthew Peters | Alexis Ross | Sameer Singh | Noah A. Smith
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Much recent work in NLP has documented dataset artifacts, bias, and spurious correlations between input features and output labels. However, how to tell which features have “spurious” instead of legitimate correlations is typically left unspecified. In this work we argue that for complex language understanding tasks, all simple feature correlations are spurious, and we formalize this notion into a class of problems which we call competency problems. For example, the word “amazing” on its own should not give information about a sentiment label independent of the context in which it appears, which could include negation, metaphor, sarcasm, etc. We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account, showing that realistic datasets will increasingly deviate from competency problems as dataset size increases. This analysis gives us a simple statistical test for dataset artifacts, which we use to show more subtle biases than were described in prior work, including demonstrating that models are inappropriately affected by these less extreme biases. Our theoretical treatment of this problem also allows us to analyze proposed solutions, such as making local edits to dataset instances, and to give recommendations for future data collection and model design efforts that target competency problems.

pdf bib
Explaining NLP Models via Minimal Contrastive Editing (MiCE)
Alexis Ross | Ana Marasović | Matthew Peters
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
CDLM: Cross-Document Language Modeling
Avi Caciularu | Arman Cohan | Iz Beltagy | Matthew Peters | Arie Cattan | Ido Dagan
Findings of the Association for Computational Linguistics: EMNLP 2021

We introduce a new pretraining approach geared for multi-document language modeling, incorporating two key ideas into the masked language modeling self-supervised objective. First, instead of considering documents in isolation, we pretrain over sets of multiple related documents, encouraging the model to learn cross-document relationships. Second, we improve over recent long-range transformers by introducing dynamic global attention that has access to the entire input to predict masked tokens. We release CDLM (Cross-Document Language Model), a new general language model for multi-document setting that can be easily applied to downstream tasks. Our extensive analysis shows that both ideas are essential for the success of CDLM, and work in synergy to set new state-of-the-art results for several multi-text tasks.

pdf bib
Beyond Paragraphs: NLP for Long Sequences
Iz Beltagy | Arman Cohan | Hannaneh Hajishirzi | Sewon Min | Matthew E. Peters
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials

In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will hopefully bring us closer to address existing challenges in this domain.

pdf bib
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
Rowan Zellers | Ari Holtzman | Matthew Peters | Roozbeh Mottaghi | Aniruddha Kembhavi | Ali Farhadi | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language. We factorize PIGLeT into a physical dynamics model, and a separate language model. Our dynamics model learns not just what objects are but also what they do: glass cups break when thrown, plastic ones don’t. We then use it as the interface to our language model, giving us a unified model of linguistic form and grounded meaning. PIGLeT can read a sentence, simulate neurally what might happen next, and then communicate that result through a literal symbolic representation, or natural language. Experimental results show that our model effectively learns world dynamics, along with how to communicate them. It is able to correctly forecast what happens next given an English sentence over 80% of the time, outperforming a 100x larger, text-to-text approach by over 10%. Likewise, its natural language summaries of physical interactions are also judged by humans as more accurate than LM alternatives. We present comprehensive analysis showing room for future work.


pdf bib
Learning from Task Descriptions
Orion Weller | Nicholas Lourie | Matt Gardner | Matthew E. Peters
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this frame- work with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model’s ability to solve each task. Moreover, the dataset’s structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.


pdf bib
To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks
Matthew E. Peters | Sebastian Ruder | Noah A. Smith
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

While most previous work has focused on different pretraining objectives and architectures for transfer learning, we ask how to best adapt the pretrained model to a given target task. We focus on the two most common forms of adaptation, feature extraction (where the pretrained weights are frozen), and directly fine-tuning the pretrained model. Our empirical results across diverse NLP tasks with two state-of-the-art models show that the relative performance of fine-tuning vs. feature extraction depends on the similarity of the pretraining and target tasks. We explore possible explanations for this finding and provide a set of adaptation guidelines for the NLP practitioner.

pdf bib
Knowledge Enhanced Contextual Word Representations
Matthew E. Peters | Mark Neumann | Robert Logan | Roy Schwartz | Vidur Joshi | Sameer Singh | Noah A. Smith
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert’s runtime is comparable to BERT’s and it scales to large KBs.

pdf bib
Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware Language Modeling
Robert Logan | Nelson F. Liu | Matthew E. Peters | Matt Gardner | Sameer Singh
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Modeling human language requires the ability to not only generate fluent text but also encode factual knowledge. However, traditional language models are only capable of remembering facts seen at training time, and often have difficulty recalling them. To address this, we introduce the knowledge graph language model (KGLM), a neural language model with mechanisms for selecting and copying facts from a knowledge graph that are relevant to the context. These mechanisms enable the model to render information it has never seen before, as well as generate out-of-vocabulary tokens. We also introduce the Linked WikiText-2 dataset, a corpus of annotated text aligned to the Wikidata knowledge graph whose contents (roughly) match the popular WikiText-2 benchmark. In experiments, we demonstrate that the KGLM achieves significantly better performance than a strong baseline language model. We additionally compare different language model’s ability to complete sentences requiring factual knowledge, showing that the KGLM outperforms even very large language models in generating facts.

pdf bib
Linguistic Knowledge and Transferability of Contextual Representations
Nelson F. Liu | Matt Gardner | Yonatan Belinkov | Matthew E. Peters | Noah A. Smith
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer language model, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on top of frozen contextual representations are competitive with state-of-the-art task-specific models in many cases, but fail on tasks requiring fine-grained linguistic knowledge (e.g., conjunct identification). To investigate the transferability of contextual word representations, we quantify differences in the transferability of individual layers within contextualizers, especially between recurrent neural networks (RNNs) and transformers. For instance, higher layers of RNNs are more task-specific, while transformer layers do not exhibit the same monotonic trend. In addition, to better understand what makes contextual word representations transferable, we compare language model pretraining with eleven supervised pretraining tasks. For any given task, pretraining on a closely related task yields better performance than language model pretraining (which is better on average) when the pretraining dataset is fixed. However, language model pretraining on more data gives the best results.

pdf bib
Transfer Learning in Natural Language Processing
Sebastian Ruder | Matthew E. Peters | Swabha Swayamdipta | Thomas Wolf
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials

The classic supervised machine learning paradigm is based on learning in isolation, a single predictive model for a task using a single dataset. This approach requires a large number of training examples and performs best for well-defined and narrow tasks. Transfer learning refers to a set of methods that extend this approach by leveraging data from additional domains or tasks to train a model with better generalization properties. Over the last two years, the field of Natural Language Processing (NLP) has witnessed the emergence of several transfer learning methods and architectures which significantly improved upon the state-of-the-art on a wide range of NLP tasks. These improvements together with the wide availability and ease of integration of these methods are reminiscent of the factors that led to the success of pretrained word embeddings and ImageNet pretraining in computer vision, and indicate that these methods will likely become a common tool in the NLP landscape as well as an important research direction. We will present an overview of modern transfer learning methods in NLP, how models are pre-trained, what information the representations they learn capture, and review examples and case studies on how these models can be integrated and adapted in downstream NLP tasks.


pdf bib
Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples
Vidur Joshi | Matthew Peters | Mark Hopkins
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.

pdf bib
AllenNLP: A Deep Semantic Natural Language Processing Platform
Matt Gardner | Joel Grus | Mark Neumann | Oyvind Tafjord | Pradeep Dasigi | Nelson F. Liu | Matthew Peters | Michael Schmitz | Luke Zettlemoyer
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

Modern natural language processing (NLP) research requires writing code. Ideally this code would provide a precise definition of the approach, easy repeatability of results, and a basis for extending the research. However, many research codebases bury high-level parameters under implementation details, are challenging to run and debug, and are difficult enough to extend that they are more likely to be rewritten. This paper describes AllenNLP, a library for applying deep learning methods to NLP research that addresses these issues with easy-to-use command-line tools, declarative configuration-driven experiments, and modular NLP abstractions. AllenNLP has already increased the rate of research experimentation and the sharing of NLP components at the Allen Institute for Artificial Intelligence, and we are working to have the same impact across the field.

pdf bib
Deep Contextualized Word Representations
Matthew E. Peters | Mark Neumann | Mohit Iyyer | Matt Gardner | Christopher Clark | Kenton Lee | Luke Zettlemoyer
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

pdf bib
Construction of the Literature Graph in Semantic Scholar
Waleed Ammar | Dirk Groeneveld | Chandra Bhagavatula | Iz Beltagy | Miles Crawford | Doug Downey | Jason Dunkelberger | Ahmed Elgohary | Sergey Feldman | Vu Ha | Rodney Kinney | Sebastian Kohlmeier | Kyle Lo | Tyler Murray | Hsu-Han Ooi | Matthew Peters | Joanna Power | Sam Skjonsberg | Lucy Wang | Chris Wilhelm | Zheng Yuan | Madeleine van Zuylen | Oren Etzioni
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)

We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in

pdf bib
Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew E. Peters | Mark Neumann | Luke Zettlemoyer | Wen-tau Yih
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.


pdf bib
The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction
Waleed Ammar | Matthew E. Peters | Chandra Bhagavatula | Russell Power
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes our submission for the ScienceIE shared task (SemEval- 2017 Task 10) on entity and relation extraction from scientific papers. Our model is based on the end-to-end relation extraction model of Miwa and Bansal (2016) with several enhancements such as semi-supervised learning via neural language models, character-level encoding, gazetteers extracted from existing knowledge bases, and model ensembles. Our official submission ranked first in end-to-end entity and relation extraction (scenario 1), and second in the relation-only extraction (scenario 3).

pdf bib
Semi-supervised sequence tagging with bidirectional language models
Matthew E. Peters | Waleed Ammar | Chandra Bhagavatula | Russell Power
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pretrained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers.