This project investigates the capabilities of Machine Translation models for generating translations at varying levels of readability, focusing on texts related to COVID-19. Whilst it is possible to automatically translate this information, the resulting text may contain specialised terminology, or may be written in a style that is difficult for lay readers to understand. So far, we have collected a new dataset with manual simplifications for English and Spanish sentences in the TICO-19 dataset, as well as implemented baseline pipelines combining Machine Translation and Text Simplification models.
Identifying complex words in texts is an important first step in text simplification (TS) systems. In this paper, we investigate the performance of binary comparative Lexical Complexity Prediction (LCP) models applied to a popular benchmark dataset — the CompLex 2.0 dataset used in SemEval-2021 Task 1. With the data from CompLex 2.0, we create a new dataset contain 1,940 sentences referred to as CompLex-BC. Using CompLex-BC, we train multiple models to differentiate which of two target words is more or less complex in the same sentence. A linear SVM model achieved the best performance in our experiments with an F1-score of 0.86.
The environmental costs of research are progressively important to the NLP community and their associated challenges are increasingly debated. In this work, we analyse the carbon cost (measured as CO2-equivalent) associated with journeys made by researchers attending in-person NLP conferences. We obtain the necessary data by text-mining all publications from the ACL anthology available at the time of the study (n=60,572) and extracting information about an author’s affiliation, including their address. This allows us to estimate the corresponding carbon cost and compare it to previously known values for training large models. Further, we look at the benefits of in-person conferences by demonstrating that they can increase participation diversity by encouraging attendance from the region surrounding the host country. We show how the trade-off between carbon cost and diversity of an event depends on its location and type. Our aim is to foster further discussion on the best way to address the joint issue of emissions and diversity in the future.
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in which words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.
We present two convolutional neural networks for predicting the complexity of words and phrases in context on a continuous scale. Both models utilize word and character embeddings alongside lexical features as inputs. Our system displays reasonable results with a Pearson correlation of 0.7754 on the task as a whole. We highlight the limitations of this method in properly assessing the context of the target text, and explore the effectiveness of both systems across a range of genres. Both models were submitted as part of LCP 2021, which focuses on the identification of complex words and phrases as a context dependent, regression based task.
In this work we propose the task of multi-word lexical simplification, in which a sentence in natural language is made easier to understand by replacing its fragment with a simpler alternative, both of which can consist of many words. In order to explore this new direction, we contribute a corpus (MWLS1), including 1462 sentences in English from various sources with 7059 simplifications provided by human annotators. We also propose an automatic solution (Plainifier) based on a purpose-trained neural language model and evaluate its performance, comparing to human and resource-based baselines.
Multiword expressions (MWEs) represent lexemes that should be treated as single lexical units due to their idiosyncratic nature. Multiple NLP applications have been shown to benefit from MWE identification, however the research on lexical complexity of MWEs is still an under-explored area. In this work, we re-annotate the Complex Word Identification Shared Task 2018 dataset of Yimam et al. (2017), which provides complexity scores for a range of lexemes, with the types of MWEs. We release the MWE-annotated dataset with this paper, and we believe this dataset represents a valuable resource for the text simplification community. In addition, we investigate which types of expressions are most problematic for native and non-native readers. Finally, we show that a lexical complexity assessment system benefits from the information about MWE types.
This work presents a replication study of Exploring Neural Text Simplification Models (Nisioi et al., 2017). We were able to successfully replicate and extend the methods presented in the original paper. Alongside the replication results, we present our improvements dubbed CombiNMT. By using an updated implementation of OpenNMT, and incorporating the Newsela corpus alongside the original Wikipedia dataset (Hwang et al., 2016), as well as refining both datasets to select high quality training examples. Our work present two new systems, CombiNMT995, which is a result of matched sentences with a cosine similarity of 0.995 or less, and CombiNMT98, which, similarly, runs on a cosine similarity of 0.98 or less. By extending the human evaluation presented within the original paper, increasing both the number of annotators and the number of sentences annotated, with the intention of increasing the quality of the results, CombiNMT998 shows significant improvement over any of the Neural Text Simplification (NTS) systems from the original paper in terms of both the number of changes and the percentage of correct changes made.
Predicting which words are considered hard to understand for a given target population is a vital step in many NLP applications such astext simplification. This task is commonly referred to as Complex Word Identification (CWI). With a few exceptions, previous studieshave approached the task as a binary classification task in which systems predict a complexity value (complex vs. non-complex) fora set of target words in a text. This choice is motivated by the fact that all CWI datasets compiled so far have been annotated using abinary annotation scheme. Our paper addresses this limitation by presenting the first English dataset for continuous lexical complexityprediction. We use a 5-point Likert scale scheme to annotate complex words in texts from three sources/domains: the Bible, Europarl,and biomedical texts. This resulted in a corpus of 9,476 sentences each annotated by around 7 annotators.
Clinical letters are infamously impenetrable for the lay patient. This work uses neural text simplification methods to automatically improve the understandability of clinical letters for patients. We take existing neural text simplification software and augment it with a new phrase table that links complex medical terminology to simpler vocabulary by mining SNOMED-CT. In an evaluation task using crowdsourcing, we show that the results of our new system are ranked easier to understand (average rank 1.93) than using the original system (2.34) without our phrase table. We also show improvement against baselines including the original text (2.79) and using the phrase table without the neural text simplification software (2.94). Our methods can easily be transferred outside of the clinical domain by using domain-appropriate resources to provide effective neural text simplification for any domain without the need for costly annotation.
We present our submission to the Semeval 2018 task on emoji prediction. We used a random forest, with an ensemble of bag-of-words, sentiment and psycholinguistic features. Although we performed well on the trial dataset (attaining a macro f-score of 63.185 for English and 81.381 for Spanish), our approach did not perform as well on the test data. We describe our features and classi cation protocol, as well as initial experiments, concluding with a discussion of the discrepancy between our trial and test results.
Lexical simplification is the task of automatically reducing the complexity of a text by identifying difficult words and replacing them with simpler alternatives. Whilst this is a valuable application of natural language generation, rudimentary lexical simplification systems suffer from a high error rate which often results in nonsensical, non-simple text. This paper seeks to characterise and quantify the errors which occur in a typical baseline lexical simplification system. We expose 6 distinct categories of error and propose a classification scheme for these. We also quantify these errors for a moderate size corpus, showing the magnitude of each error type. We find that for 183 identified simplification instances, only 19 (10.38%) result in a valid simplification, with the rest causing errors of varying gravity.