Matthias Aßenmacher


2022

pdf bib
Pre-trained language models evaluating themselves - A comparative study
Philipp Koch | Matthias Aßenmacher | Christian Heumann
Proceedings of the Third Workshop on Insights from Negative Results in NLP

Evaluating generated text received new attention with the introduction of model-based metrics in recent years. These new metrics have a higher correlation with human judgments and seemingly overcome many issues of previous n-gram based metrics from the symbolic age. In this work, we examine the recently introduced metrics BERTScore, BLEURT, NUBIA, MoverScore, and Mark-Evaluate (Petersen). We investigate their sensitivity to different types of semantic deterioration (part of speech drop and negation), word order perturbations, word drop, and the common problem of repetition. No metric showed appropriate behaviour for negation, and further none of them was overall sensitive to the other issues mentioned above.

2021

pdf bib
Benchmarking down-scaled (not so large) pre-trained language models
Matthias Aßenmacher | Patrick Schulze | Christian Heumann
Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)

2020

pdf bib
Evaluating Unsupervised Representation Learning for Detecting Stances of Fake News
Maike Guderlei | Matthias Aßenmacher
Proceedings of the 28th International Conference on Computational Linguistics

Our goal is to evaluate the usefulness of unsupervised representation learning techniques for detecting stances of Fake News. Therefore we examine several pre-trained language models with respect to their performance on two Fake News related data sets, both consisting of instances with a headline, an associated news article and the stance of the article towards the respective headline. Specifically, the aim is to understand how much hyperparameter tuning is necessary when fine-tuning the pre-trained architectures, how well transfer learning works in this specific case of stance detection and how sensitive the models are to changes in hyperparameters like batch size, learning rate (schedule), sequence length as well as the freezing technique. The results indicate that the computationally more expensive autoregression approach of XLNet (Yanget al., 2019) is outperformed by BERT-based models, notably by RoBERTa (Liu et al., 2019).While the learning rate seems to be the most important hyperparameter, experiments with different freezing techniques indicate that all evaluated architectures had already learned powerful language representations that pose a good starting point for fine-tuning them.