Matthias Cetto


2019

pdf bib
Transforming Complex Sentences into a Semantic Hierarchy
Christina Niklaus | Matthias Cetto | André Freitas | Siegfried Handschuh
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present an approach for recursively splitting and rephrasing complex English sentences into a novel semantic hierarchy of simplified sentences, with each of them presenting a more regular structure that may facilitate a wide variety of artificial intelligence tasks, such as machine translation (MT) or information extraction (IE). Using a set of hand-crafted transformation rules, input sentences are recursively transformed into a two-layered hierarchical representation in the form of core sentences and accompanying contexts that are linked via rhetorical relations. In this way, the semantic relationship of the decomposed constituents is preserved in the output, maintaining its interpretability for downstream applications. Both a thorough manual analysis and automatic evaluation across three datasets from two different domains demonstrate that the proposed syntactic simplification approach outperforms the state of the art in structural text simplification. Moreover, an extrinsic evaluation shows that when applying our framework as a preprocessing step the performance of state-of-the-art Open IE systems can be improved by up to 346% in precision and 52% in recall. To enable reproducible research, all code is provided online.

pdf bib
DisSim: A Discourse-Aware Syntactic Text Simplification Framework for English and German
Christina Niklaus | Matthias Cetto | André Freitas | Siegfried Handschuh
Proceedings of the 12th International Conference on Natural Language Generation

We introduce DisSim, a discourse-aware sentence splitting framework for English and German whose goal is to transform syntactically complex sentences into an intermediate representation that presents a simple and more regular structure which is easier to process for downstream semantic applications. For this purpose, we turn input sentences into a two-layered semantic hierarchy in the form of core facts and accompanying contexts, while identifying the rhetorical relations that hold between them. In that way, we preserve the coherence structure of the input and, hence, its interpretability for downstream tasks.

2018

pdf bib
Graphene: Semantically-Linked Propositions in Open Information Extraction
Matthias Cetto | Christina Niklaus | André Freitas | Siegfried Handschuh
Proceedings of the 27th International Conference on Computational Linguistics

We present an Open Information Extraction (IE) approach that uses a two-layered transformation stage consisting of a clausal disembedding layer and a phrasal disembedding layer, together with rhetorical relation identification. In that way, we convert sentences that present a complex linguistic structure into simplified, syntactically sound sentences, from which we can extract propositions that are represented in a two-layered hierarchy in the form of core relational tuples and accompanying contextual information which are semantically linked via rhetorical relations. In a comparative evaluation, we demonstrate that our reference implementation Graphene outperforms state-of-the-art Open IE systems in the construction of correct n-ary predicate-argument structures. Moreover, we show that existing Open IE approaches can benefit from the transformation process of our framework.

pdf bib
A Survey on Open Information Extraction
Christina Niklaus | Matthias Cetto | André Freitas | Siegfried Handschuh
Proceedings of the 27th International Conference on Computational Linguistics

We provide a detailed overview of the various approaches that were proposed to date to solve the task of Open Information Extraction. We present the major challenges that such systems face, show the evolution of the suggested approaches over time and depict the specific issues they address. In addition, we provide a critique of the commonly applied evaluation procedures for assessing the performance of Open IE systems and highlight some directions for future work.

pdf bib
Graphene: a Context-Preserving Open Information Extraction System
Matthias Cetto | Christina Niklaus | André Freitas | Siegfried Handschuh
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

We introduce Graphene, an Open IE system whose goal is to generate accurate, meaningful and complete propositions that may facilitate a variety of downstream semantic applications. For this purpose, we transform syntactically complex input sentences into clean, compact structures in the form of core facts and accompanying contexts, while identifying the rhetorical relations that hold between them in order to maintain their semantic relationship. In that way, we preserve the context of the relational tuples extracted from a source sentence, generating a novel lightweight semantic representation for Open IE that enhances the expressiveness of the extracted propositions.