Maunendra Desarkar


2024

pdf bib
CharSpan: Utilizing Lexical Similarity to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages
Kaushal Maurya | Rahul Kejriwal | Maunendra Desarkar | Anoop Kunchukuttan
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

We address the task of machine translation (MT) from extremely low-resource language (ELRL) to English by leveraging cross-lingual transfer from *closely-related* high-resource language (HRL). The development of an MT system for ELRL is challenging because these languages typically lack parallel corpora and monolingual corpora, and their representations are absent from large multilingual language models. Many ELRLs share lexical similarities with some HRLs, which presents a novel modeling opportunity. However, existing subword-based neural MT models do not explicitly harness this lexical similarity, as they only implicitly align HRL and ELRL latent embedding space. To overcome this limitation, we propose a novel, CharSpan, approach based on character-span noise augmentation into the training data of HRL. This serves as a regularization technique, making the model more robust to lexical divergences between the HRL and ELRL, thus facilitating effective cross-lingual transfer. Our method significantly outperformed strong baselines in zero-shot settings on closely related HRL and ELRL pairs from three diverse language families, emerging as the state-of-the-art model for ELRLs.

2023

pdf bib
SelectNoise: Unsupervised Noise Injection to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages
Maharaj Brahma | Kaushal Maurya | Maunendra Desarkar
Findings of the Association for Computational Linguistics: EMNLP 2023

In this work, we focus on the task of machine translation (MT) from extremely low-resource language (ELRLs) to English. The unavailability of parallel data, lack of representation from large multilingual pre-trained models, and limited monolingual data hinder the development of MT systems for ELRLs. However, many ELRLs often share lexical similarities with high-resource languages (HRLs) due to factors such as dialectical variations, geographical proximity, and language structure. We utilize this property to improve cross-lingual signals from closely related HRL to enable MT for ELRLs. Specifically, we propose a novel unsupervised approach, SelectNoise, based on selective candidate extraction and noise injection to generate noisy HRLs training data. The noise injection acts as a regularizer, and the model trained with noisy data learns to handle lexical variations such as spelling, grammar, and vocabulary changes, leading to improved cross-lingual transfer to ELRLs. The selective candidates are extracted using BPE merge operations and edit operations, and noise injection is performed using greedy, top-p, and top-k sampling strategies. We evaluate the proposed model on 12 ELRLs from the FLORES-200 benchmark in a zero-shot setting across two language families. The proposed model outperformed all the strong baselines, demonstrating its efficacy. It has comparable performance with the supervised noise injection model. Our code and model are publicly available.

pdf bib
Towards Low-resource Language Generation with Limited Supervision
Kaushal Maurya | Maunendra Desarkar
Proceedings of the Big Picture Workshop

We present a research narrative aimed at enabling language technology for multiple natural language generation (NLG) tasks in low-resource languages (LRLs). With approximately 7,000 languages spoken globally, many lack the resources required for model training. NLG applications for LRLs present two additional key challenges: (i) The training is more pronounced, and (ii) Zero-shot modeling is a viable research direction for scalability; however, generating zero-shot well-formed text in target LRLs is challenging. Addressing these concerns, this narrative introduces three promising research explorations that serve as a step toward enabling language technology for many LRLs. These approaches make effective use of transfer learning and limited supervision techniques for modeling. Evaluations were conducted mostly in the zero-shot setting, enabling scalability. This research narrative is an ongoing doctoral thesis.

2022

pdf bib
Meta-XNLG: A Meta-Learning Approach Based on Language Clustering for Zero-Shot Cross-Lingual Transfer and Generation
Kaushal Maurya | Maunendra Desarkar
Findings of the Association for Computational Linguistics: ACL 2022

Recently, the NLP community has witnessed a rapid advancement in multilingual and cross-lingual transfer research where the supervision is transferred from high-resource languages (HRLs) to low-resource languages (LRLs). However, the cross-lingual transfer is not uniform across languages, particularly in the zero-shot setting. Towards this goal, one promising research direction is to learn shareable structures across multiple tasks with limited annotated data. The downstream multilingual applications may benefit from such a learning setup as most of the languages across the globe are low-resource and share some structures with other languages. In this paper, we propose a novel meta-learning framework (called Meta-XNLG) to learn shareable structures from typologically diverse languages based on meta-learning and language clustering. This is a step towards uniform cross-lingual transfer for unseen languages. We first cluster the languages based on language representations and identify the centroid language of each cluster. Then, a meta-learning algorithm is trained with all centroid languages and evaluated on the other languages in the zero-shot setting. We demonstrate the effectiveness of this modeling on two NLG tasks (Abstractive Text Summarization and Question Generation), 5 popular datasets and 30 typologically diverse languages. Consistent improvements over strong baselines demonstrate the efficacy of the proposed framework. The careful design of the model makes this end-to-end NLG setup less vulnerable to the accidental translation problem, which is a prominent concern in zero-shot cross-lingual NLG tasks.

pdf bib
Towards Fair Evaluation of Dialogue State Tracking by Flexible Incorporation of Turn-level Performances
Suvodip Dey | Ramamohan Kummara | Maunendra Desarkar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Dialogue State Tracking (DST) is primarily evaluated using Joint Goal Accuracy (JGA) defined as the fraction of turns where the ground-truth dialogue state exactly matches the prediction. Generally in DST, the dialogue state or belief state for a given turn contain all the intents shown by the user till that turn. Due to this cumulative nature of the belief state, it is difficult to get a correct prediction once a misprediction has occurred. Thus, although being a useful metric, it can be harsh at times and underestimate the true potential of a DST model. Moreover, an improvement in JGA can sometimes decrease the performance of turn-level or non-cumulative belief state prediction due to inconsistency in annotations. So, using JGA as the only metric for model selection may not be ideal for all scenarios. In this work, we discuss various evaluation metrics used for DST along with their shortcomings. To address the existing issues, we propose a new evaluation metric named Flexible Goal Accuracy (FGA). FGA is a generalized version of JGA. But unlike JGA, it tries to give penalized rewards to mispredictions that are locally correct i.e. the root cause of the error is an earlier turn. By doing so, FGA considers the performance of both cumulative and turn-level prediction flexibly and provides a better insight than the existing metrics. We also show that FGA is a better discriminator of DST model performance.

pdf bib
Towards Robust and Semantically Organised Latent Representations for Unsupervised Text Style Transfer
Sharan Narasimhan | Suvodip Dey | Maunendra Desarkar
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent studies show that auto-encoder based approaches successfully perform language generation, smooth sentence interpolation, and style transfer over unseen attributes using unlabelled datasets in a zero-shot manner. The latent space geometry of such models is organised well enough to perform on datasets where the style is “coarse-grained” i.e. a small fraction of words alone in a sentence are enough to determine the overall style label. A recent study uses a discrete token-based perturbation approach to map “similar” sentences (“similar” defined by low Levenshtein distance/ high word overlap) close by in latent space. This definition of “similarity” does not look into the underlying nuances of the constituent words while mapping latent space neighbourhoods and therefore fails to recognise sentences with different style-based semantics while mapping latent neighbourhoods. We introduce EPAAEs (Embedding Perturbed Adversarial AutoEncoders) which completes this perturbation model, by adding a finely adjustable noise component on the continuous embeddings space. We empirically show that this (a) produces a better organised latent space that clusters stylistically similar sentences together, (b) performs best on a diverse set of text style transfer tasks than its counterparts, and (c) is capable of fine-grained control of Style Transfer strength. We also extend the text style transfer tasks to NLI datasets and show that these more complex definitions of style are learned best by EPAAE. To the best of our knowledge, extending style transfer to NLI tasks has not been explored before.