Max Grusky
2023
Rogue Scores
Max Grusky
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Correct, comparable, and reproducible model evaluation is essential for progress in machine learning. Over twenty years, thousands of language and vision models have been evaluated with a popular metric called ROUGE. Does this widespread benchmark metric meet these three evaluation criteria? This systematic review of over two thousand publications using ROUGE finds: (A) Critical evaluation decisions and parameters are routinely omitted, making most reported scores irreproducible. (B) Differences in evaluation protocol are common, affect scores, and impact the comparability of results reported in many papers. (C) Thousands of papers use nonstandard evaluation packages with software defects that produce provably incorrect scores. Estimating the overall impact of these findings is difficult: because software citations are rare, it is nearly impossible to distinguish between correct ROUGE scores and incorrect “rogue scores.”
2018
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
Max Grusky
|
Mor Naaman
|
Yoav Artzi
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
We present NEWSROOM, a summarization dataset of 1.3 million articles and summaries written by authors and editors in newsrooms of 38 major news publications. Extracted from search and social media metadata between 1998 and 2017, these high-quality summaries demonstrate high diversity of summarization styles. In particular, the summaries combine abstractive and extractive strategies, borrowing words and phrases from articles at varying rates. We analyze the extraction strategies used in NEWSROOM summaries against other datasets to quantify the diversity and difficulty of our new data, and train existing methods on the data to evaluate its utility and challenges. The dataset is available online at summari.es.