Maxim Panov


2024

pdf bib
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Ekaterina Fadeeva | Aleksandr Rubashevskii | Artem Shelmanov | Sergey Petrakov | Haonan Li | Hamdy Mubarak | Evgenii Tsymbalov | Gleb Kuzmin | Alexander Panchenko | Timothy Baldwin | Preslav Nakov | Maxim Panov
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factually correct, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of a particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for seven different LLMs and four languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.

pdf bib
Reference-free Hallucination Detection for Large Vision-Language Models
Qing Li | Jiahui Geng | Chenyang Lyu | Derui Zhu | Maxim Panov | Fakhri Karray
Findings of the Association for Computational Linguistics: EMNLP 2024

Large vision-language models (LVLMs) have made significant progress in recent years. While LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs, they are prone to producing hallucinations. While several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools, which complicates their practical application. To assess the viability of alternative methods, it is critical to understand whether the reference-free approaches, which do not rely on any external tools, can efficiently detect hallucinations. Therefore, we initiate an exploratory study to demonstrate the effectiveness of different reference-free solutions in detecting hallucinations in LVLMs. In particular, we conduct an extensive study on three kinds of techniques: uncertainty-based, consistency-based, and supervised uncertainty quantification methods on four representative LVLMs across two different tasks. The empirical results show that the reference-free approaches are capable of effectively detecting non-factual responses in LVLMs, with the supervised uncertainty quantification method outperforming the others, achieving the best performance across different settings.

2023

pdf bib
Hybrid Uncertainty Quantification for Selective Text Classification in Ambiguous Tasks
Artem Vazhentsev | Gleb Kuzmin | Akim Tsvigun | Alexander Panchenko | Maxim Panov | Mikhail Burtsev | Artem Shelmanov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many text classification tasks are inherently ambiguous, which results in automatic systems having a high risk of making mistakes, in spite of using advanced machine learning models. For example, toxicity detection in user-generated content is a subjective task, and notions of toxicity can be annotated according to a variety of definitions that can be in conflict with one another. Instead of relying solely on automatic solutions, moderation of the most difficult and ambiguous cases can be delegated to human workers. Potential mistakes in automated classification can be identified by using uncertainty estimation (UE) techniques. Although UE is a rapidly growing field within natural language processing, we find that state-of-the-art UE methods estimate only epistemic uncertainty and show poor performance, or under-perform trivial methods for ambiguous tasks such as toxicity detection. We argue that in order to create robust uncertainty estimation methods for ambiguous tasks it is necessary to account also for aleatoric uncertainty. In this paper, we propose a new uncertainty estimation method that combines epistemic and aleatoric UE methods. We show that by using our hybrid method, we can outperform state-of-the-art UE methods for toxicity detection and other ambiguous text classification tasks.

pdf bib
Efficient Out-of-Domain Detection for Sequence to Sequence Models
Artem Vazhentsev | Akim Tsvigun | Roman Vashurin | Sergey Petrakov | Daniil Vasilev | Maxim Panov | Alexander Panchenko | Artem Shelmanov
Findings of the Association for Computational Linguistics: ACL 2023

Sequence-to-sequence (seq2seq) models based on the Transformer architecture have become a ubiquitous tool applicable not only to classical text generation tasks such as machine translation and summarization but also to any other task where an answer can be represented in a form of a finite text fragment (e.g., question answering). However, when deploying a model in practice, we need not only high performance but also an ability to determine cases where the model is not applicable. Uncertainty estimation (UE) techniques provide a tool for identifying out-of-domain (OOD) input where the model is susceptible to errors. State-of-the-art UE methods for seq2seq models rely on computationally heavyweight and impractical deep ensembles. In this work, we perform an empirical investigation of various novel UE methods for large pre-trained seq2seq models T5 and BART on three tasks: machine translation, text summarization, and question answering. We apply computationally lightweight density-based UE methods to seq2seq models and show that they often outperform heavyweight deep ensembles on the task of OOD detection.

pdf bib
LM-Polygraph: Uncertainty Estimation for Language Models
Ekaterina Fadeeva | Roman Vashurin | Akim Tsvigun | Artem Vazhentsev | Sergey Petrakov | Kirill Fedyanin | Daniil Vasilev | Elizaveta Goncharova | Alexander Panchenko | Maxim Panov | Timothy Baldwin | Artem Shelmanov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Recent advancements in the capabilities of large language models (LLMs) have paved the way for a myriad of groundbreaking applications in various fields. However, a significant challenge arises as these models often “hallucinate”, i.e., fabricate facts without providing users an apparent means to discern the veracity of their statements. Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of LLMs. However, to date, research on UE methods for LLMs has been focused primarily on theoretical rather than engineering contributions. In this work, we tackle this issue by introducing LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python. Additionally, it introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores, empowering end-users to discern unreliable responses. LM-Polygraph is compatible with the most recent LLMs, including BLOOMz, LLaMA-2, ChatGPT, and GPT-4, and is designed to support future releases of similarly-styled LMs.

pdf bib
Uncertainty Estimation for Debiased Models: Does Fairness Hurt Reliability?
Gleb Kuzmin | Artem Vazhentsev | Artem Shelmanov | Xudong Han | Simon Suster | Maxim Panov | Alexander Panchenko | Timothy Baldwin
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2022

pdf bib
Uncertainty Estimation of Transformer Predictions for Misclassification Detection
Artem Vazhentsev | Gleb Kuzmin | Artem Shelmanov | Akim Tsvigun | Evgenii Tsymbalov | Kirill Fedyanin | Maxim Panov | Alexander Panchenko | Gleb Gusev | Mikhail Burtsev | Manvel Avetisian | Leonid Zhukov
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Uncertainty estimation (UE) of model predictions is a crucial step for a variety of tasks such as active learning, misclassification detection, adversarial attack detection, out-of-distribution detection, etc. Most of the works on modeling the uncertainty of deep neural networks evaluate these methods on image classification tasks. Little attention has been paid to UE in natural language processing. To fill this gap, we perform a vast empirical investigation of state-of-the-art UE methods for Transformer models on misclassification detection in named entity recognition and text classification tasks and propose two computationally efficient modifications, one of which approaches or even outperforms computationally intensive methods.

pdf bib
Active Learning for Abstractive Text Summarization
Akim Tsvigun | Ivan Lysenko | Danila Sedashov | Ivan Lazichny | Eldar Damirov | Vladimir Karlov | Artemy Belousov | Leonid Sanochkin | Maxim Panov | Alexander Panchenko | Mikhail Burtsev | Artem Shelmanov
Findings of the Association for Computational Linguistics: EMNLP 2022

Construction of human-curated annotated datasets for abstractive text summarization (ATS) is very time-consuming and expensive because creating each instance requires a human annotator to read a long document and compose a shorter summary that would preserve the key information relayed by the original document. Active Learning (AL) is a technique developed to reduce the amount of annotation required to achieve a certain level of machine learning model performance. In information extraction and text classification, AL can reduce the amount of labor up to multiple times. Despite its potential for aiding expensive annotation, as far as we know, there were no effective AL query strategies for ATS. This stems from the fact that many AL strategies rely on uncertainty estimation, while as we show in our work, uncertain instances are usually noisy, and selecting them can degrade the model performance compared to passive annotation. We address this problem by proposing the first effective query strategy for AL in ATS based on diversity principles. We show that given a certain annotation budget, using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores. Additionally, we analyze the effect of self-learning and show that it can additionally increase the performance of the model.

2021

pdf bib
How Certain is Your Transformer?
Artem Shelmanov | Evgenii Tsymbalov | Dmitri Puzyrev | Kirill Fedyanin | Alexander Panchenko | Maxim Panov
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

In this work, we consider the problem of uncertainty estimation for Transformer-based models. We investigate the applicability of uncertainty estimates based on dropout usage at the inference stage (Monte Carlo dropout). The series of experiments on natural language understanding tasks shows that the resulting uncertainty estimates improve the quality of detection of error-prone instances. Special attention is paid to the construction of computationally inexpensive estimates via Monte Carlo dropout and Determinantal Point Processes.