Maximilian Grotz


2012

pdf bib
Adaptive Speech Understanding for Intuitive Model-based Spoken Dialogues
Tobias Heinroth | Maximilian Grotz | Florian Nothdurft | Wolfgang Minker
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

In this paper we present three approaches towards adaptive speech understanding. The target system is a model-based Adaptive Spoken Dialogue Manager, the OwlSpeak ASDM. We enhanced this system in order to properly react on non-understandings in real-life situations where intuitive communication is required. OwlSpeak provides a model-based spoken interface to an Intelligent Environment depending on and adapting to the current context. It utilises a set of ontologies used as dialogue models that can be combined dynamically during runtime. Besides the benefits the system showed in practice, real-life evaluations also conveyed some limitations of the model-based approach. Since it is unfeasible to model all variations of the communication between the user and the system beforehand, various situations where the system did not correctly understand the user input have been observed. Thus we present three enhancements towards a more sophisticated use of the ontology-based dialogue models and show how grammars may dynamically be adapted in order to understand intuitive user utterances. The evaluation of our approaches revealed the incorporation of a lexical-semantic knowledgebase into the recognition process to be the most promising approach.