Mayank Kothyari
2023
DITTO: Data-efficient and Fair Targeted Subset Selection for ASR Accent Adaptation
Suraj Kothawade
|
Anmol Mekala
|
D.Chandra Sekhara Hetha Havya
|
Mayank Kothyari
|
Rishabh Iyer
|
Ganesh Ramakrishnan
|
Preethi Jyothi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
State-of-the-art Automatic Speech Recognition (ASR) systems are known to exhibit disparate performance on varying speech accents. To improve performance on a specific target accent, a commonly adopted solution is to finetune the ASR model using accent-specific labeled speech. However, acquiring large amounts of labeled speech for specific target accents is challenging. Choosing an informative subset of speech samples that are most representative of the target accents becomes important for effective ASR finetuning. To address this problem, we propose DITTO (Data-efficient and faIr Targeted subseT selectiOn that uses Submodular Mutual Information (SMI) functions as acquisition functions to find the most informative set of utterances matching a target accent within a fixed budget. An important feature of DITTO is that it supports fair targeting for multiple accents, i.e. it can automatically select representative data points from multiple accents when the ASR model needs to perform well on more than one accent. We show that compared to other speech selection methods, DITTO is 3-5 times as label-efficient for its improvements on the Indic-TTS and L2 datasets.
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Mayank Kothyari
|
Dhruva Dhingra
|
Sunita Sarawagi
|
Soumen Chakrabarti
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual documents. In response, we propose a two-stage process for effective coverage during retrieval. First, we use an LLM to hallucinate a minimal DB schema that it deems adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination — generally considered a nuisance — turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce two benchmarks: (1) A semi-synthetic dataset of 4502 schema elements, by taking a union of schema on the well-known SPIDER dataset, and (2) A real-life benchmark called SocialDB sourced from an actual large data warehouse comprising of 17844 schema elements. We show that our method leads to significantly higher recall than SOTA retrieval-based augmentation methods.
Search