Megh Thakkar


pdf bib
AdaPT: A Set of Guidelines for Hyperbolic Multimodal Multilingual NLP
Ramit Sawhney | Shrey Pandit | Vishwa Shah | Megh Thakkar | Shafiq Joty
Findings of the Association for Computational Linguistics: NAACL 2024

The Euclidean space is the familiar space for training neural models and performing arithmetic operations.However, many data types inherently possess complex geometries, and model training methods involve operating over their latent representations, which cannot be effectively captured in the Euclidean space.The hyperbolic space provides a more generalized representative geometry to model the hierarchical complexities of the tree-like structure of natural language.We propose AdaPT a set of guidelines for initialization, parametrization, and training of neural networks, which adapts to the dataset and can be used with different manifolds. AdaPT can be generalized over any existing neural network training methodology and leads to more stable training without a substantial increase in training time.We apply AdaPT guidelines over two state-of-the-art deep learning approaches and empirically demonstrate its effectiveness through experiments on three tasks over 12 languages across speech and text.Through extensive qualitative analysis, we put forward the applicability of AdaPT as a set of guidelines optimally utilizing the manifold geometry, which can be extended to various downstream tasks across languages and modalities.


pdf bib
Self-Influence Guided Data Reweighting for Language Model Pre-training
Megh Thakkar | Tolga Bolukbasi | Sriram Ganapathy | Shikhar Vashishth | Sarath Chandar | Partha Talukdar
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) pre-trained with selfsupervision on large text corpora have become the default starting point for developing models for various NLP tasks. Once the pre-training corpus has been assembled, all data samples in the corpus are treated with equal importance during LM pre-training. However, due to varying levels of relevance and quality of data, equal importance to all the data samples may not be the optimal choice. While data reweighting has been explored in the context of task-specific supervised learning and LM fine-tuning, model-driven reweighting for pretraining data has not been explored. We fill this important gap and propose PRESENCE, a method for jointly reweighting samples by leveraging self-influence (SI) scores as an indicator of sample importance and pre-training. PRESENCE promotes novelty and stability for model pre-training. Through extensive analysis spanning multiple model sizes, datasets, and tasks, we present PRESENCE as an important first step in the research direction of sample reweighting for pre-training language models.

pdf bib
Towards Robust Low-Resource Fine-Tuning with Multi-View Compressed Representations
Linlin Liu | Xingxuan Li | Megh Thakkar | Xin Li | Shafiq Joty | Luo Si | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the huge amount of parameters, finetuning of pretrained language models (PLMs) is prone to overfitting in the low resource scenarios. In this work, we present a novel method that operates on the hidden representations of a PLM to reduce overfitting. During fine-tuning, our method inserts random autoencoders between the hidden layers of a PLM, which transform activations from the previous layers into multi-view compressed representations before feeding them into the upper layers. The autoencoders are plugged out after fine-tuning, so our method does not add extra parameters or increase computation cost during inference. Our method demonstrates promising performance improvement across a wide range of sequence- and token-level lowresource NLP tasks.

pdf bib
Randomized Smoothing with Masked Inference for Adversarially Robust Text Classifications
Han Cheol Moon | Shafiq Joty | Ruochen Zhao | Megh Thakkar | Chi Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large-scale pre-trained language models have shown outstanding performance in a variety of NLP tasks. However, they are also known to be significantly brittle against specifically crafted adversarial examples, leading to increasing interest in probing the adversarial robustness of NLP systems. We introduce RSMI, a novel two-stage framework that combines randomized smoothing (RS) with masked inference (MI) to improve the adversarial robustness of NLP systems. RS transforms a classifier into a smoothed classifier to obtain robust representations, whereas MI forces a model to exploit the surrounding context of a masked token in an input sequence. RSMI improves adversarial robustness by 2 to 3 times over existing state-of-the-art methods on benchmark datasets. We also perform in-depth qualitative analysis to validate the effectiveness of the different stages of RSMI and probe the impact of its components through extensive ablations. By empirically proving the stability of RSMI, we put it forward as a practical method to robustly train large-scale NLP models. Our code and datasets are available at


pdf bib
Tweet Based Reach Aware Temporal Attention Network for NFT Valuation
Ramit Sawhney | Megh Thakkar | Ritesh Soun | Atula Neerkaje | Vasu Sharma | Dipanwita Guhathakurta | Sudheer Chava
Findings of the Association for Computational Linguistics: EMNLP 2022

Non-Fungible Tokens (NFTs) are a relatively unexplored class of assets. Designing strategies to forecast NFT trends is an intricate task due to its extremely volatile nature. The market is largely driven by public sentiment and “hype”, which in turn has a high correlation with conversations taking place on social media platforms like Twitter. Prior work done for modelling stock market data does not take into account the extent of impact certain highly influential tweets and their authors can have on the market. Building on these limitations and the nature of the NFT market, we propose a novel reach-aware temporal learning approach to make predictions for forecasting future trends in the NFT market. We perform experiments on a new dataset consisting of over 1.3 million tweets and 180 thousand NFT transactions spanning over 15 NFT collections curated by us. Our model (TA-NFT) outperforms other state-of-the-art methods by an average of 36%. Through extensive quantitative and ablative analysis, we demonstrate the ability of our approach as a practical method for predicting NFT trends.

pdf bib
Chart-to-Text: A Large-Scale Benchmark for Chart Summarization
Shankar Kantharaj | Rixie Tiffany Leong | Xiang Lin | Ahmed Masry | Megh Thakkar | Enamul Hoque | Shafiq Joty
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Charts are commonly used for exploring data and communicating insights. Generating natural language summaries from charts can be very helpful for people in inferring key insights that would otherwise require a lot of cognitive and perceptual efforts. We present Chart-to-text, a large-scale benchmark with two datasets and a total of 44,096 charts covering a wide range of topics and chart types. We explain the dataset construction process and analyze the datasets. We also introduce a number of state-of-the-art neural models as baselines that utilize image captioning and data-to-text generation techniques to tackle two problem variations: one assumes the underlying data table of the chart is available while the other needs to extract data from chart images. Our analysis with automatic and human evaluation shows that while our best models usually generate fluent summaries and yield reasonable BLEU scores, they also suffer from hallucinations and factual errors as well as difficulties in correctly explaining complex patterns and trends in charts.

pdf bib
DMix: Adaptive Distance-aware Interpolative Mixup
Ramit Sawhney | Megh Thakkar | Shrey Pandit | Ritesh Soun | Di Jin | Diyi Yang | Lucie Flek
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Interpolation-based regularisation methods such as Mixup, which generate virtual training samples, have proven to be effective for various tasks and modalities. We extend Mixup and propose DMix, an adaptive distance-aware interpolative Mixup that selects samples based on their diversity in the embedding space. DMix leverages the hyperbolic space as a similarity measure among input samples for a richer encoded representation.DMix achieves state-of-the-art results on sentence classification over existing data augmentation methods on 8 benchmark datasets across English, Arabic, Turkish, and Hindi languages while achieving benchmark F1 scores in 3 times less number of iterations. We probe the effectiveness of DMix in conjunction with various similarity measures and qualitatively analyze the different components.DMix being generalizable, can be applied to various tasks, models and modalities.

pdf bib
CIAug: Equipping Interpolative Augmentation with Curriculum Learning
Ramit Sawhney | Ritesh Soun | Shrey Pandit | Megh Thakkar | Sarvagya Malaviya | Yuval Pinter
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Interpolative data augmentation has proven to be effective for NLP tasks. Despite its merits, the sample selection process in mixup is random, which might make it difficult for the model to generalize better and converge faster. We propose CIAug, a novel curriculum-based learning method that builds upon mixup. It leverages the relative position of samples in hyperbolic embedding space as a complexity measure to gradually mix up increasingly difficult and diverse samples along training. CIAug achieves state-of-the-art results over existing interpolative augmentation methods on 10 benchmark datasets across 4 languages in text classification and named-entity recognition tasks. It also converges and achieves benchmark F1 scores 3 times faster. We empirically analyze the various components of CIAug, and evaluate its robustness against adversarial attacks.


pdf bib
HypMix: Hyperbolic Interpolative Data Augmentation
Ramit Sawhney | Megh Thakkar | Shivam Agarwal | Di Jin | Diyi Yang | Lucie Flek
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Interpolation-based regularisation methods for data augmentation have proven to be effective for various tasks and modalities. These methods involve performing mathematical operations over the raw input samples or their latent states representations - vectors that often possess complex hierarchical geometries. However, these operations are performed in the Euclidean space, simplifying these representations, which may lead to distorted and noisy interpolations. We propose HypMix, a novel model-, data-, and modality-agnostic interpolative data augmentation technique operating in the hyperbolic space, which captures the complex geometry of input and hidden state hierarchies better than its contemporaries. We evaluate HypMix on benchmark and low resource datasets across speech, text, and vision modalities, showing that HypMix consistently outperforms state-of-the-art data augmentation techniques. In addition, we demonstrate the use of HypMix in semi-supervised settings. We further probe into the adversarial robustness and qualitative inferences we draw from HypMix that elucidate the efficacy of the Riemannian hyperbolic manifolds for interpolation-based data augmentation.