Mehdi Ghanimifard


pdf bib
Fast visual grounding in interaction: bringing few-shot learning with neural networks to an interactive robot
José Miguel Cano Santín | Simon Dobnik | Mehdi Ghanimifard
Proceedings of the Probability and Meaning Conference (PaM 2020)

The major shortcomings of using neural networks with situated agents are that in incremental interaction very few learning examples are available and that their visual sensory representations are quite different from image caption datasets. In this work we adapt and evaluate a few-shot learning approach, Matching Networks (Vinyals et al., 2016), to conversational strategies of a robot interacting with a human tutor in order to efficiently learn to categorise objects that are presented to it and also investigate to what degree transfer learning from pre-trained models on images from different contexts can improve its performance. We discuss the implications of such learning on the nature of semantic representations the system has learned.


pdf bib
What a neural language model tells us about spatial relations
Mehdi Ghanimifard | Simon Dobnik
Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP)

Understanding and generating spatial descriptions requires knowledge about what objects are related, their functional interactions, and where the objects are geometrically located. Different spatial relations have different functional and geometric bias. The wide usage of neural language models in different areas including generation of image description motivates the study of what kind of knowledge is encoded in neural language models about individual spatial relations. With the premise that the functional bias of relations is expressed in their word distributions, we construct multi-word distributional vector representations and show that these representations perform well on intrinsic semantic reasoning tasks, thus confirming our premise. A comparison of our vector representations to human semantic judgments indicates that different bias (functional or geometric) is captured in different data collection tasks which suggests that the contribution of the two meaning modalities is dynamic, related to the context of the task.

pdf bib
What goes into a word: generating image descriptions with top-down spatial knowledge
Mehdi Ghanimifard | Simon Dobnik
Proceedings of the 12th International Conference on Natural Language Generation

Generating grounded image descriptions requires associating linguistic units with their corresponding visual clues. A common method is to train a decoder language model with attention mechanism over convolutional visual features. Attention weights align the stratified visual features arranged by their location with tokens, most commonly words, in the target description. However, words such as spatial relations (e.g. next to and under) are not directly referring to geometric arrangements of pixels but to complex geometric and conceptual representations. The aim of this paper is to evaluate what representations facilitate generating image descriptions with spatial relations and lead to better grounded language generation. In particular, we investigate the contribution of three different representational modalities in generating relational referring expressions: (i) pre-trained convolutional visual features, (ii) different top-down geometric relational knowledge between objects, and (iii) world knowledge captured by contextual embeddings in language models.

pdf bib
Synthetic Propaganda Embeddings To Train A Linear Projection
Adam Ek | Mehdi Ghanimifard
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

This paper presents a method of detecting fine-grained categories of propaganda in text. Given a sentence, our method aims to identify a span of words and predict the type of propaganda used. To detect propaganda, we explore a method for extracting features of propaganda from contextualized embeddings without fine-tuning the large parameters of the base model. We show that by generating synthetic embeddings we can train a linear function with ReLU activation to extract useful labeled embeddings from an embedding space generated by a general-purpose language model. We also introduce an inference technique to detect continuous spans in sequences of propaganda tokens in sentences. A result of the ensemble model is submitted to the first shared task in fine-grained propaganda detection at NLP4IF as Team Stalin. In this paper, we provide additional analysis regarding our method of detecting spans of propaganda with synthetically generated representations.


pdf bib
Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection
Yuri Bizzoni | Mehdi Ghanimifard
Proceedings of the Workshop on Figurative Language Processing

We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.

pdf bib
Exploring the Functional and Geometric Bias of Spatial Relations Using Neural Language Models
Simon Dobnik | Mehdi Ghanimifard | John Kelleher
Proceedings of the First International Workshop on Spatial Language Understanding

The challenge for computational models of spatial descriptions for situated dialogue systems is the integration of information from different modalities. The semantics of spatial descriptions are grounded in at least two sources of information: (i) a geometric representation of space and (ii) the functional interaction of related objects that. We train several neural language models on descriptions of scenes from a dataset of image captions and examine whether the functional or geometric bias of spatial descriptions reported in the literature is reflected in the estimated perplexity of these models. The results of these experiments have implications for the creation of models of spatial lexical semantics for human-robot dialogue systems. Furthermore, they also provide an insight into the kinds of the semantic knowledge captured by neural language models trained on spatial descriptions, which has implications for image captioning systems.


pdf bib
“Deep” Learning : Detecting Metaphoricity in Adjective-Noun Pairs
Yuri Bizzoni | Stergios Chatzikyriakidis | Mehdi Ghanimifard
Proceedings of the Workshop on Stylistic Variation

Metaphor is one of the most studied and widespread figures of speech and an essential element of individual style. In this paper we look at metaphor identification in Adjective-Noun pairs. We show that using a single neural network combined with pre-trained vector embeddings can outperform the state of the art in terms of accuracy. In specific, the approach presented in this paper is based on two ideas: a) transfer learning via using pre-trained vectors representing adjective noun pairs, and b) a neural network as a model of composition that predicts a metaphoricity score as output. We present several different architectures for our system and evaluate their performances. Variations on dataset size and on the kinds of embeddings are also investigated. We show considerable improvement over the previous approaches both in terms of accuracy and w.r.t the size of annotated training data.

pdf bib
Learning to Compose Spatial Relations with Grounded Neural Language Models
Mehdi Ghanimifard | Simon Dobnik
Proceedings of the 12th International Conference on Computational Semantics (IWCS) — Long papers


pdf bib
Enriching Word Sense Embeddings with Translational Context
Mehdi Ghanimifard | Richard Johansson
Proceedings of the International Conference Recent Advances in Natural Language Processing