Mehmet Sofi


2022

pdf bib
A Robustness Evaluation Framework for Argument Mining
Mehmet Sofi | Matteo Fortier | Oana Cocarascu
Proceedings of the 9th Workshop on Argument Mining

Standard practice for evaluating the performance of machine learning models for argument mining is to report different metrics such as accuracy or F1. However, little is usually known about the model’s stability and consistency when deployed in real-world settings. In this paper, we propose a robustness evaluation framework to guide the design of rigorous argument mining models. As part of the framework, we introduce several novel robustness tests tailored specifically to argument mining tasks. Additionally, we integrate existing robustness tests designed for other natural language processing tasks and re-purpose them for argument mining. Finally, we illustrate the utility of our framework on two widely used argument mining corpora, UKP topic-sentences and IBM Debater Evidence Sentence. We argue that our framework should be used in conjunction with standard performance evaluation techniques as a measure of model stability.