Automating Cross-lingual Science Journalism (CSJ) aims to generate popular science summaries from English scientific texts for non-expert readers in their local language. We introduce CSJ as a downstream task of text simplification and cross-lingual scientific summarization to facilitate science journalists’ work. We analyze the performance of possible existing solutions as baselines for the CSJ task. Based on these findings, we propose to combine the three components - SELECT, SIMPLIFY and REWRITE (SSR) to produce cross-lingual simplified science summaries for non-expert readers. Our empirical evaluation on the Wikipedia dataset shows that SSR significantly outperforms the baselines for the CSJ task and can serve as a strong baseline for future work. We also perform an ablation study investigating the impact of individual components of SSR. Further, we analyze the performance of SSR on a high-quality, real-world CSJ dataset with human evaluation and in-depth analysis, demonstrating the superior performance of SSR for CSJ.
Cross-lingual science journalism is a recently introduced task that generates popular science summaries of scientific articles different from the source language for non-expert readers. A popular science summary must contain salient content of the input document while focusing on coherence and comprehensibility. Meanwhile, generating a cross-lingual summary from the scientific texts in a local language for the targeted audience is challenging. Existing research on cross-lingual science journalism investigates the task with a pipeline model to combine text simplification and cross-lingual summarization. We extend the research in cross-lingual science journalism by introducing a novel, multi-task learning architecture that combines the aforementioned NLP tasks. Our approach is to jointly train the two high-level NLP tasks in SimCSum for generating cross-lingual popular science summaries. We investigate the performance of SimCSum against the pipeline model and several other strong baselines with several evaluation metrics and human evaluation. Overall, SimCSum demonstrates statistically significant improvements over the state-of-the-art on two non-synthetic cross-lingual scientific datasets. Furthermore, we conduct an in-depth investigation into the linguistic properties of generated summaries and an error analysis.
Cross-lingual summarization is a challenging task for which there are no cross-lingual scientific resources currently available. To overcome the lack of a high-quality resource, we present a new dataset for monolingual and cross-lingual summarization considering the English-German pair. We collect high-quality, real-world cross-lingual data from Spektrum der Wissenschaft, which publishes human-written German scientific summaries of English science articles on various subjects. The generated Spektrum dataset is small; therefore, we harvest a similar dataset from the Wikipedia Science Portal to complement it. The Wikipedia dataset consists of English and German articles, which can be used for monolingual and cross-lingual summarization. Furthermore, we present a quantitative analysis of the datasets and results of empirical experiments with several existing extractive and abstractive summarization models. The results suggest the viability and usefulness of the proposed dataset for monolingual and cross-lingual summarization.