Meina Song


pdf bib
RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph Completion
Youri Xu | Haihong E | Meina Song | Wenyu Song | Xiaodong Lv | Wang Haotian | Yang Jinrui
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to transplant SKGE models to TKGs and to enhance the performance of existing TKGE models for TKG completion. Different from previous work which ignores the continuity of states of TKG in time evolution, we treat the sequence of graphs as a Markov chain, which transitions from the previous state to the next state. RTFE takes the SKGE to initialize the embeddings of TKG. Then it recursively tracks the state transition of TKG by passing updated parameters/features between timestamps. Specifically, at each timestamp, we approximate the state transition as the gradient update process. Since RTFE learns each timestamp recursively, it can naturally transit to future timestamps. Experiments on five TKG datasets show the effectiveness of RTFE.


pdf bib
A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling
Haihong E | Peiqing Niu | Zhongfu Chen | Meina Song
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

A spoken language understanding (SLU) system includes two main tasks, slot filling (SF) and intent detection (ID). The joint model for the two tasks is becoming a tendency in SLU. But the bi-directional interrelated connections between the intent and slots are not established in the existing joint models. In this paper, we propose a novel bi-directional interrelated model for joint intent detection and slot filling. We introduce an SF-ID network to establish direct connections for the two tasks to help them promote each other mutually. Besides, we design an entirely new iteration mechanism inside the SF-ID network to enhance the bi-directional interrelated connections. The experimental results show that the relative improvement in the sentence-level semantic frame accuracy of our model is 3.79% and 5.42% on ATIS and Snips datasets, respectively, compared to the state-of-the-art model.