Meirong Ma


2022

pdf bib
Understanding Gender Bias in Knowledge Base Embeddings
Yupei Du | Qi Zheng | Yuanbin Wu | Man Lan | Yan Yang | Meirong Ma
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge base (KB) embeddings have been shown to contain gender biases. In this paper, we study two questions regarding these biases: how to quantify them, and how to trace their origins in KB? Specifically, first, we develop two novel bias measures respectively for a group of person entities and an individual person entity. Evidence of their validity is observed by comparison with real-world census data. Second, we use the influence function to inspect the contribution of each triple in KB to the overall group bias. To exemplify the potential applications of our study, we also present two strategies (by adding and removing KB triples) to mitigate gender biases in KB embeddings.

pdf bib
An Effective and Efficient Entity Alignment Decoding Algorithm via Third-Order Tensor Isomorphism
Xin Mao | Meirong Ma | Hao Yuan | Jianchao Zhu | ZongYu Wang | Rui Xie | Wei Wu | Man Lan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Entity alignment (EA) aims to discover the equivalent entity pairs between KGs, which is a crucial step for integrating multi-source KGs.For a long time, most researchers have regarded EA as a pure graph representation learning task and focused on improving graph encoders while paying little attention to the decoding process.In this paper, we propose an effective and efficient EA Decoding Algorithm via Third-order Tensor Isomorphism (DATTI).Specifically, we derive two sets of isomorphism equations: (1) Adjacency tensor isomorphism equations and (2) Gramian tensor isomorphism equations.By combining these equations, DATTI could effectively utilize the adjacency and inner correlation isomorphisms of KGs to enhance the decoding process of EA.Extensive experiments on public datasets indicate that our decoding algorithm can deliver significant performance improvements even on the most advanced EA methods, while the extra required time is less than 3 seconds.