Melanie Sclar


2023

pdf bib
BotPercent: Estimating Bot Populations in Twitter Communities
Zhaoxuan Tan | Shangbin Feng | Melanie Sclar | Herun Wan | Minnan Luo | Yejin Choi | Yulia Tsvetkov
Findings of the Association for Computational Linguistics: EMNLP 2023

Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method—BotPercent—is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. The implementation of BotPercent is available at https://github.com/TamSiuhin/BotPercent.

pdf bib
FANToM: A Benchmark for Stress-testing Machine Theory of Mind in Interactions
Hyunwoo Kim | Melanie Sclar | Xuhui Zhou | Ronan Bras | Gunhee Kim | Yejin Choi | Maarten Sap
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Theory of mind (ToM) evaluations currently focus on testing models using passive narratives that inherently lack interactivity. We introduce FANToM, a new benchmark designed to stress-test ToM within information-asymmetric conversational contexts via question answering. Our benchmark draws upon important theoretical requisites from psychology and necessary empirical considerations when evaluating large language models (LLMs). In particular, we formulate multiple types of questions that demand the same underlying reasoning to identify illusory or false sense of ToM capabilities in LLMs. We show that FANToM is challenging for state-of-the-art LLMs, which perform significantly worse than humans even with chain-of-thought reasoning or fine-tuning.

pdf bib
Minding Language Models’ (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker
Melanie Sclar | Sachin Kumar | Peter West | Alane Suhr | Yejin Choi | Yulia Tsvetkov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Theory of Mind (ToM)—the ability to reason about the mental states of other people—is a key element of our social intelligence. Yet, despite their ever more impressive performance, large-scale neural language models still lack basic theory of mind capabilities out-of-the-box. We posit that simply scaling up models will not imbue them with theory of mind due to the inherently symbolic and implicit nature of the phenomenon, and instead investigate an alternative: can we design a decoding-time algorithm that enhances theory of mind of off-the-shelf neural language models without explicit supervision? We present SymbolicToM, a plug-and-play approach to reason about the belief states of multiple characters in reading comprehension tasks via explicit symbolic representation. More concretely, our approach tracks each entity’s beliefs, their estimation of other entities’ beliefs, and higher-order levels of reasoning, all through graphical representations, allowing for more precise and interpretable reasoning than previous approaches. Empirical results on the well-known ToMi benchmark (Le et al., 2019) demonstrate that SymbolicToM dramatically enhances off-the-shelf neural networks’ theory of mind in a zero-shot setting while showing robust out-of-distribution performance compared to supervised baselines. Our work also reveals spurious patterns in existing theory of mind benchmarks, emphasizing the importance of out-of-distribution evaluation and methods that do not overfit a particular dataset.

2022

pdf bib
Referee: Reference-Free Sentence Summarization with Sharper Controllability through Symbolic Knowledge Distillation
Melanie Sclar | Peter West | Sachin Kumar | Yulia Tsvetkov | Yejin Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present Referee, a novel framework for sentence summarization that can be trained reference-free (i.e., requiring no gold summaries for supervision), while allowing direct control for compression ratio. Our work is the first to demonstrate that reference-free, controlled sentence summarization is feasible via the conceptual framework of Symbolic Knowledge Distillation (West et al., 2022), where latent knowledge in pre-trained language models is distilled via explicit examples sampled from the teacher models, further purified with three types of filters: length, fidelity, and Information Bottleneck. Moreover, we uniquely propose iterative distillation of knowledge, where student models from the previous iteration of distillation serve as teacher models in the next iteration. Starting off from a relatively modest set of GPT3-generated summaries, we demonstrate how iterative knowledge distillation can lead to considerably smaller, but better summarizers with sharper controllability. A useful by-product of this iterative distillation process is a high-quality dataset of sentence-summary pairs with varying degrees of compression ratios. Empirical results demonstrate that the final student models vastly outperform the much larger GPT3-Instruct model in terms of the controllability of compression ratios, without compromising the quality of resulting summarization.