2023
pdf
bib
abs
DiffusEmp: A Diffusion Model-Based Framework with Multi-Grained Control for Empathetic Response Generation
Guanqun Bi
|
Lei Shen
|
Yanan Cao
|
Meng Chen
|
Yuqiang Xie
|
Zheng Lin
|
Xiaodong He
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Empathy is a crucial factor in open-domain conversations, which naturally shows one’s caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.
pdf
bib
abs
Tackling Modality Heterogeneity with Multi-View Calibration Network for Multimodal Sentiment Detection
Yiwei Wei
|
Shaozu Yuan
|
Ruosong Yang
|
Lei Shen
|
Zhangmeizhi Li
|
Longbiao Wang
|
Meng Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
With the popularity of social media, detecting sentiment from multimodal posts (e.g. image-text pairs) has attracted substantial attention recently. Existing works mainly focus on fusing different features but ignore the challenge of modality heterogeneity. Specifically, different modalities with inherent disparities may bring three problems: 1) introducing redundant visual features during feature fusion; 2) causing feature shift in the representation space; 3) leading to inconsistent annotations for different modal data. All these issues will increase the difficulty in understanding the sentiment of the multimodal content. In this paper, we propose a novel Multi-View Calibration Network (MVCN) to alleviate the above issues systematically. We first propose a text-guided fusion module with novel Sparse-Attention to reduce the negative impacts of redundant visual elements. We then devise a sentiment-based congruity constraint task to calibrate the feature shift in the representation space. Finally, we introduce an adaptive loss calibration strategy to tackle inconsistent annotated labels. Extensive experiments demonstrate the competitiveness of MVCN against previous approaches and achieve state-of-the-art results on two public benchmark datasets.
pdf
bib
abs
Dialog-Post: Multi-Level Self-Supervised Objectives and Hierarchical Model for Dialogue Post-Training
Zhenyu Zhang
|
Lei Shen
|
Yuming Zhao
|
Meng Chen
|
Xiaodong He
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Dialogue representation and understanding aim to convert conversational inputs into embeddings and fulfill discriminative tasks. Compared with free-form text, dialogue has two important characteristics, hierarchical semantic structure and multi-facet attributes. Therefore, directly applying the pretrained language models (PLMs) might result in unsatisfactory performance. Recently, several work focused on the dialogue-adaptive post-training (DialPost) that further trains PLMs to fit dialogues. To model dialogues more comprehensively, we propose a DialPost method, Dialog-Post, with multi-level self-supervised objectives and a hierarchical model. These objectives leverage dialogue-specific attributes and use self-supervised signals to fully facilitate the representation and understanding of dialogues. The novel model is a hierarchical segment-wise self-attention network, which contains inner-segment and inter-segment self-attention sub-layers followed by an aggregation and updating module. To evaluate the effectiveness of our methods, we first apply two public datasets for the verification of representation ability. Then we conduct experiments on a newly-labelled dataset that is annotated with 4 dialogue understanding tasks. Experimental results show that our method outperforms existing SOTA models and achieves a 3.3% improvement on average.
2022
pdf
bib
abs
Few-Shot Table Understanding: A Benchmark Dataset and Pre-Training Baseline
Ruixue Liu
|
Shaozu Yuan
|
Aijun Dai
|
Lei Shen
|
Tiangang Zhu
|
Meng Chen
|
Xiaodong He
Proceedings of the 29th International Conference on Computational Linguistics
Few-shot table understanding is a critical and challenging problem in real-world scenario as annotations over large amount of tables are usually costly. Pre-trained language models (PLMs), which have recently flourished on tabular data, have demonstrated their effectiveness for table understanding tasks. However, few-shot table understanding is rarely explored due to the deficiency of public table pre-training corpus and well-defined downstream benchmark tasks, especially in Chinese. In this paper, we establish a benchmark dataset, FewTUD, which consists of 5 different tasks with human annotations to systematically explore the few-shot table understanding in depth. Since there is no large number of public Chinese tables, we also collect a large-scale, multi-domain tabular corpus to facilitate future Chinese table pre-training, which includes one million tables and related natural language text with auxiliary supervised interaction signals. Finally, we present FewTPT, a novel table PLM with rich interactions over tabular data, and evaluate its performance comprehensively on the benchmark. Our dataset and model will be released to the public soon.
pdf
bib
abs
E-ConvRec: A Large-Scale Conversational Recommendation Dataset for E-Commerce Customer Service
Meihuizi Jia
|
Ruixue Liu
|
Peiying Wang
|
Yang Song
|
Zexi Xi
|
Haobin Li
|
Xin Shen
|
Meng Chen
|
Jinhui Pang
|
Xiaodong He
Proceedings of the Thirteenth Language Resources and Evaluation Conference
There has been a growing interest in developing conversational recommendation system (CRS), which provides valuable recommendations to users through conversations. Compared to the traditional recommendation, it advocates wealthier interactions and provides possibilities to obtain users’ exact preferences explicitly. Nevertheless, the corresponding research on this topic is limited due to the lack of broad-coverage dialogue corpus, especially real-world dialogue corpus. To handle this issue and facilitate our exploration, we construct E-ConvRec, an authentic Chinese dialogue dataset consisting of over 25k dialogues and 770k utterances, which contains user profile, product knowledge base (KB), and multiple sequential real conversations between users and recommenders. Next, we explore conversational recommendation in a real scene from multiple facets based on the dataset. Therefore, we particularly design three tasks: user preference recognition, dialogue management, and personalized recommendation. In the light of the three tasks, we establish baseline results on E-ConvRec to facilitate future studies.
pdf
bib
abs
Label Anchored Contrastive Learning for Language Understanding
Zhenyu Zhang
|
Yuming Zhao
|
Meng Chen
|
Xiaodong He
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Contrastive learning (CL) has achieved astonishing progress in computer vision, speech, and natural language processing fields recently with self-supervised learning. However, CL approach to the supervised setting is not fully explored, especially for the natural language understanding classification task. Intuitively, the class label itself has the intrinsic ability to perform hard positive/negative mining, which is crucial for CL. Motivated by this, we propose a novel label anchored contrastive learning approach (denoted as LaCon) for language understanding. Specifically, three contrastive objectives are devised, including a multi-head instance-centered contrastive loss (ICL), a label-centered contrastive loss (LCL), and a label embedding regularizer (LER). Our approach does not require any specialized network architecture or any extra data augmentation, thus it can be easily plugged into existing powerful pre-trained language models. Compared to the state-of-the-art baselines, LaCon obtains up to 4.1% improvement on the popular datasets of GLUE and CLUE benchmarks. Besides, LaCon also demonstrates significant advantages under the few-shot and data imbalance settings, which obtains up to 9.4% improvement on the FewGLUE and FewCLUE benchmarking tasks.
2020
pdf
bib
abs
The JDDC Corpus: A Large-Scale Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service
Meng Chen
|
Ruixue Liu
|
Lei Shen
|
Shaozu Yuan
|
Jingyan Zhou
|
Youzheng Wu
|
Xiaodong He
|
Bowen Zhou
Proceedings of the Twelfth Language Resources and Evaluation Conference
Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task.