Mengkang Hu
2024
KET-QA: A Dataset for Knowledge Enhanced Table Question Answering
Mengkang Hu
|
Haoyu Dong
|
Ping Luo
|
Shi Han
|
Dongmei Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Due to the concise and structured nature of tables, the knowledge contained therein may be incomplete or missing, posing a significant challenge for table question answering (TableQA) systems. However, most existing datasets either overlook the challenge of missing knowledge in TableQA or only utilize unstructured text as supplementary information for tables. In this paper, we propose to use a knowledge base (KB) as the external knowledge source for TableQA and construct a dataset KET-QA with fine-grained gold evidence annotation. Each table in the dataset corresponds to a sub-graph of the entire KB, and every question requires the integration of information from both the table and the sub-graph to be answered. To extract pertinent information from the vast knowledge sub-graph and apply it to TableQA, we design a retriever-reasoner structured pipeline model. Experimental results demonstrate that our model consistently achieves remarkable relative performance improvements ranging from 1.9 to 6.5 times on EM scores across three distinct settings (fine-tuning, zero-shot, and few-shot), in comparison with solely relying on table information. However, even the best model achieves a 60.23% EM score, which still lags behind the human-level performance, highlighting the challenging nature of KET-QA for the question-answering community.
2022
TaCube: Pre-computing Data Cubes for Answering Numerical-Reasoning Questions over Tabular Data
Fan Zhou
|
Mengkang Hu
|
Haoyu Dong
|
Zhoujun Cheng
|
Fan Cheng
|
Shi Han
|
Dongmei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Existing auto-regressive pre-trained language models (PLMs) like T5 and BART, have been well applied to table question answering by UNIFIEDSKG and TAPEX, respectively, and demonstrated state-of-the-art results on multiple benchmarks. However, auto-regressive PLMs are challenged by recent emerging numerical reasoning datasets, such as TAT-QA, due to the error-prone implicit calculation. In this paper, we present TaCube, to pre-compute aggregation/arithmetic results for the table in advance, so that they are handy and readily available for PLMs to answer numerical reasoning questions. TaCube systematically and comprehensively covers a collection of computational operations over table segments. By simply concatenating TaCube to the input sequence of PLMs, it shows significant experimental effectiveness. TaCube promotes the F1 score from 49.6% to 66.2% on TAT-QA and achieves new state-of-the-art results on WikiTQ (59.6% denotation accuracy). TaCube’s improvements on numerical reasoning cases are even more notable: on TAT-QA, TaCube promotes the exact match accuracy of BART-large by 39.6% on sum, 52.5% on average, 36.6% on substraction, and 22.2% on division. We believe that TaCube is a general and portable pre-computation solution that can be potentially integrated to various numerical reasoning frameworks