Mengsay Loem


2024

pdf bib
Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Masanari Ohi | Masahiro Kaneko | Ryuto Koike | Mengsay Loem | Naoaki Okazaki
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics.However, the likelihood, a measure of LLM’s plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure.It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods.In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators.We also propose a method to mitigate the likelihood bias.Our method utilizes highly biased instances as few-shot examples for in-context learning.Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias.Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.

2023

pdf bib
Exploring Effectiveness of GPT-3 in Grammatical Error Correction: A Study on Performance and Controllability in Prompt-Based Methods
Mengsay Loem | Masahiro Kaneko | Sho Takase | Naoaki Okazaki
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

Large-scale pre-trained language models such as GPT-3 have shown remarkable performance across various natural language processing tasks. However, applying prompt-based methods with GPT-3 for Grammatical Error Correction (GEC) tasks and their controllability remains underexplored. Controllability in GEC is crucial for real-world applications, particularly in educational settings, where the ability to tailor feedback according to learner levels and specific error types can significantly enhance the learning process. This paper investigates the performance and controllability of prompt-based methods with GPT-3 for GEC tasks using zero-shot and few-shot setting. We explore the impact of task instructions and examples on GPT-3’s output, focusing on controlling aspects such as minimal edits, fluency edits, and learner levels. Our findings demonstrate that GPT-3 could effectively perform GEC tasks, outperforming existing supervised and unsupervised approaches. We also showed that GPT-3 could achieve controllability when appropriate task instructions and examples are given.

2022

pdf bib
ExtraPhrase: Efficient Data Augmentation for Abstractive Summarization
Mengsay Loem | Sho Takase | Masahiro Kaneko | Naoaki Okazaki
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Neural models trained with large amount of parallel data have achieved impressive performance in abstractive summarization tasks. However, large-scale parallel corpora are expensive and challenging to construct. In this work, we introduce a low-cost and effective strategy, ExtraPhrase, to augment training data for abstractive summarization tasks. ExtraPhrase constructs pseudo training data in two steps: extractive summarization and paraphrasing. We extract major parts of an input text in the extractive summarization step and obtain its diverse expressions with the paraphrasing step. Through experiments, we show that ExtraPhrase improves the performance of abstractive summarization tasks by more than 0.50 points in ROUGE scores compared to the setting without data augmentation. ExtraPhrase also outperforms existing methods such as back-translation and self-training. We also show that ExtraPhrase is significantly effective when the amount of genuine training data is remarkably small, i.e., a low-resource setting. Moreover, ExtraPhrase is more cost-efficient than the existing approaches