Mengxia Wu
2023
An Empirical Study of Frame Selection for Text-to-Video Retrieval
Mengxia Wu
|
Min Cao
|
Yang Bai
|
Ziyin Zeng
|
Chen Chen
|
Liqiang Nie
|
Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
Text-to-video retrieval (TVR) aims to find the most relevant video in a large video gallery given a query text. The intricate and abundant context of the video challenges the performance and efficiency of TVR. To handle the serialized video contexts, existing methods typically select a subset of frames within a video to represent the video content for TVR. How to select the most representative frames is a crucial issue, whereby the selected frames are required to not only retain the semantic information of the video but also promote retrieval efficiency by excluding temporally redundant frames. In this paper, we make the first empirical study of frame selection for TVR. We systemically classify existing frame selection methods into text-free and text-guided ones, under which we detailedly analyze six different frame selections in terms of effectiveness and efficiency. Among them, two frame selections are first developed in this paper. According to the comprehensive analysis on multiple TVR benchmarks, we empirically conclude that the TVR with proper frame selections can significantly improve the retrieval efficiency without sacrificing the retrieval performance.
Search
Co-authors
- Chen Chen 1
- Liqiang Nie 1
- Min Cao 1
- Min Zhang (张民) 1
- Yang Bai 1
- show all...