Mengxing Dong


2022

pdf bib
Capturing Conversational Interaction for Question Answering via Global History Reasoning
Jin Qian | Bowei Zou | Mengxing Dong | Xiao Li | AiTi Aw | Yu Hong
Findings of the Association for Computational Linguistics: NAACL 2022

Conversational Question Answering (ConvQA) is required to answer the current question, conditioned on the observable paragraph-level context and conversation history. Previous works have intensively studied history-dependent reasoning. They perceive and absorb topic-related information of prior utterances in the interactive encoding stage. It yielded significant improvement compared to history-independent reasoning. This paper further strengthens the ConvQA encoder by establishing long-distance dependency among global utterances in multi-turn conversation. We use multi-layer transformers to resolve long-distance relationships, which potentially contribute to the reweighting of attentive information in historical utterances. Experiments on QuAC show that our method obtains a substantial improvement (1%), yielding the F1 score of 73.7%. All source codes are available at https://github.com/jaytsien/GHR.