Mengyu Bu


2025

pdf bib
MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation
Langlin Huang | Mengyu Bu | Yang Feng
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Byte-based machine translation systems have shown significant potential in massively multilingual settings. Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages, enabling broad language scalability. However, byte-level tokenization results in sequences that are hard to interpret due to limited semantic information per byte. Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension. Nevertheless, variations in encoding rules across languages necessitate an adaptive approach for effective contextualization. To this end, we propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts. This enhances the flexibility of contextualization scales and improves the potential to discover a better strategy than previous methods. Experiment results show that our method outperforms existing methods without extensive manual adjustment of hyper-parameters and surpasses subword-based models with fewer parameters in Ted-59 dataset.

2024

pdf bib
Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features
Mengyu Bu | Shuhao Gu | Yang Feng
Findings of the Association for Computational Linguistics: ACL 2024

The many-to-many multilingual neural machine translation can be regarded as the process of integrating semantic features from the source sentences and linguistic features from the target sentences. To enhance zero-shot translation, models need to share knowledge across languages, which can be achieved through auxiliary tasks for learning a universal representation or cross-lingual mapping. To this end, we propose to exploit both semantic and linguistic features between multiple languages to enhance multilingual translation. On the encoder side, we introduce a disentangling learning task that aligns encoder representations by disentangling semantic and linguistic features, thus facilitating knowledge transfer while preserving complete information. On the decoder side, we leverage a linguistic encoder to integrate low-level linguistic features to assist in the target language generation. Experimental results on multilingual datasets demonstrate significant improvement in zero-shot translation compared to the baseline system, while maintaining performance in supervised translation. Further analysis validates the effectiveness of our method in leveraging both semantic and linguistic features.