Meredith Gibbons
2024
ShefCDTeam at SemEval-2024 Task 4: A Text-to-Text Model for Multi-Label Classification
Meredith Gibbons
|
Maggie Mi
|
Xingyi Song
|
Aline Villavicencio
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
This paper presents our findings for SemEval2024 Task 4. We submit only to subtask 1, applying the text-to-text framework using a FLAN-T5 model with a combination of parameter efficient fine-tuning methods - low-rankadaptation and prompt tuning. Overall, we find that the system performs well in English, but performance is limited in Bulgarian, North Macedonian and Arabic. Our analysis raises interesting questions about the effects of labelorder and label names when applying the text-to-text framework.