Meysam Asgari


pdf bib
Topic-Based Measures of Conversation for Detecting Mild CognitiveImpairment
Meysam Asgari | Liu Chen | Hiroko Dodge
Proceedings of the First Workshop on Natural Language Processing for Medical Conversations

Conversation is a complex cognitive task that engages multiple aspects of cognitive functions to remember the discussed topics, monitor the semantic and linguistic elements, and recognize others’ emotions. In this paper, we propose a computational method based on the lexical coherence of consecutive utterances to quantify topical variations in semi-structured conversations of older adults with cognitive impairments. Extracting the lexical knowledge of conversational utterances, our method generate a set of novel conversational measures that indicate underlying cognitive deficits among subjects with mild cognitive impairment (MCI). Our preliminary results verifies the utility of the proposed conversation-based measures in distinguishing MCI from healthy controls.

pdf bib
Automated Scoring of Clinical Expressive Language Evaluation Tasks
Yiyi Wang | Emily Prud’hommeaux | Meysam Asgari | Jill Dolata
Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications

Many clinical assessment instruments used to diagnose language impairments in children include a task in which the subject must formulate a sentence to describe an image using a specific target word. Because producing sentences in this way requires the speaker to integrate syntactic and semantic knowledge in a complex manner, responses are typically evaluated on several different dimensions of appropriateness yielding a single composite score for each response. In this paper, we present a dataset consisting of non-clinically elicited responses for three related sentence formulation tasks, and we propose an approach for automatically evaluating their appropriateness. We use neural machine translation to generate correct-incorrect sentence pairs in order to create synthetic data to increase the amount and diversity of training data for our scoring model. Our scoring model uses transfer learning to facilitate automatic sentence appropriateness evaluation. We further compare custom word embeddings with pre-trained contextualized embeddings serving as features for our scoring model. We find that transfer learning improves scoring accuracy, particularly when using pretrained contextualized embeddings.