Miao Fang
2023
Enhancing Personalized Dialogue Generation with Contrastive Latent Variables: Combining Sparse and Dense Persona
Yihong Tang
|
Bo Wang
|
Miao Fang
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The personalized dialogue explores the consistent relationship between dialogue generation and personality. Existing personalized dialogue agents model persona profiles from three resources: sparse or dense persona descriptions and dialogue histories. However, sparse structured persona attributes are explicit but uninformative, dense persona texts contain rich persona descriptions with much noise, and dialogue history query is both noisy and uninformative for persona modeling. In this work, we combine the advantages of the three resources to obtain a richer and more accurate persona. We design a Contrastive Latent Variable-based model (CLV) that clusters the dense persona descriptions into sparse categories, which are combined with the history query to generate personalized responses. Experimental results on Chinese and English datasets demonstrate our model’s superiority in personalization.
Search
Fix data
Co-authors
- Ruifang He 1
- Yuexian Hou 1
- Kun Huang 1
- Yihong Tang 1
- Bo Wang 1
- show all...
Venues
- acl1