Micah Goldblum
2025
LLM-Generated Passphrases That Are Secure and Easy to Remember
Jie S. Li
|
Jonas Geiping
|
Micah Goldblum
|
Aniruddha Saha
|
Tom Goldstein
Findings of the Association for Computational Linguistics: NAACL 2025
Automatically generated passwords and passphrases are a cornerstone of IT security. Yet, these passphrases are often hard to remember and see only limited adoption. In this work, we use large language models to generate passphrases with rigorous security guarantees via the computation of the entropy of the output as a metric of the security of the passphrase. We then present a range of practical methods to generate language model outputs with sufficient entropy: raising entropy through in-context examples and generation through a new top-q truncation method. We further verify the influence of prompt construction in steering the output topic and grammatical structure. Finally, we conduct user studies to determine the adoption rates for these LLM-generated passphrases in practice.
2024
Calibration-Tuning: Teaching Large Language Models to Know What They Don’t Know
Sanyam Kapoor
|
Nate Gruver
|
Manley Roberts
|
Arka Pal
|
Samuel Dooley
|
Micah Goldblum
|
Andrew Wilson
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)
Large language models are increasingly deployed for high-stakes decision making, for example in financial and medical applications. In such applications, it is imperative that we be able to estimate our confidence in the answers output by a language model in order to assess risks. Although we can easily compute the probability assigned by a language model to the sequence of tokens that make up an answer, we cannot easily compute the probability of the answer itself, which could be phrased in numerous ways.While other works have engineered ways of assigning such probabilities to LLM outputs, a key problem remains: existing language models are poorly calibrated, often confident when they are wrong or unsure when they are correct. In this work, we devise a protocol called *calibration tuning* for finetuning LLMs to output calibrated probabilities. Calibration-tuned models demonstrate superior calibration performance compared to existing language models on a variety of question-answering tasks, including open-ended generation, without affecting accuracy. We further show that this ability transfers to new domains outside of the calibration-tuning train set.
Search
Fix data
Co-authors
- Samuel Dooley 1
- Jonas Geiping 1
- Tom Goldstein 1
- Nate Gruver 1
- Sanyam Kapoor 1
- show all...