Michael Greenspan


2022

pdf bib
Neuro-symbolic Natural Logic with Introspective Revision for Natural Language Inference
Yufei Feng | Xiaoyu Yang | Xiaodan Zhu | Michael Greenspan
Transactions of the Association for Computational Linguistics, Volume 10

We introduce a neuro-symbolic natural logic framework based on reinforcement learning with introspective revision. The model samples and rewards specific reasoning paths through policy gradient, in which the introspective revision algorithm modifies intermediate symbolic reasoning steps to discover reward-earning operations as well as leverages external knowledge to alleviate spurious reasoning and training inefficiency. The framework is supported by properly designed local relation models to avoid input entangling, which helps ensure the interpretability of the proof paths. The proposed model has built-in interpretability and shows superior capability in monotonicity inference, systematic generalization, and interpretability, compared with previous models on the existing datasets.

2020

pdf bib
Exploring End-to-End Differentiable Natural Logic Modeling
Yufei Feng | Zi’ou Zheng | Quan Liu | Michael Greenspan | Xiaodan Zhu
Proceedings of the 28th International Conference on Computational Linguistics

We explore end-to-end trained differentiable models that integrate natural logic with neural networks, aiming to keep the backbone of natural language reasoning based on the natural logic formalism while introducing subsymbolic vector representations and neural components. The proposed model adapts module networks to model natural logic operations, which is enhanced with a memory component to model contextual information. Experiments show that the proposed framework can effectively model monotonicity-based reasoning, compared to the baseline neural network models without built-in inductive bias for monotonicity-based reasoning. Our proposed model shows to be robust when transferred from upward to downward inference. We perform further analyses on the performance of the proposed model on aggregation, showing the effectiveness of the proposed subcomponents on helping achieve better intermediate aggregation performance.