Michael Jellinghaus


2010

pdf bib
Exodus - Exploring SMT for EU Institutions
Michael Jellinghaus | Alexandros Poulis | David Kolovratník
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

2009

pdf bib
Combining Multi-Engine Translations with Moses
Yu Chen | Michael Jellinghaus | Andreas Eisele | Yi Zhang | Sabine Hunsicker | Silke Theison | Christian Federmann | Hans Uszkoreit
Proceedings of the Fourth Workshop on Statistical Machine Translation

pdf bib
Translation Combination using Factored Word Substitution
Christian Federmann | Silke Theison | Andreas Eisele | Hans Uszkoreit | Yu Chen | Michael Jellinghaus | Sabine Hunsicker
Proceedings of the Fourth Workshop on Statistical Machine Translation

2008

pdf bib
Using Moses to Integrate Multiple Rule-Based Machine Translation Engines into a Hybrid System
Andreas Eisele | Christian Federmann | Hervé Saint-Amand | Michael Jellinghaus | Teresa Herrmann | Yu Chen
Proceedings of the Third Workshop on Statistical Machine Translation

pdf bib
Hybrid machine translation architectures within and beyond the EuroMatrix project
Andreas Eisele | Christian Federmann | Hans Uszkoreit | Hervé Saint-Amand | Martin Kay | Michael Jellinghaus | Sabine Hunsicker | Teresa Herrmann | Yu Chen
Proceedings of the 12th Annual conference of the European Association for Machine Translation

2007

pdf bib
Multi-Engine Machine Translation with an Open-Source SMT Decoder
Yu Chen | Andreas Eisele | Christian Federmann | Eva Hasler | Michael Jellinghaus | Silke Theison
Proceedings of the Second Workshop on Statistical Machine Translation

2006

pdf bib
Multilingual parallel treebanking: a lean and flexible approach
Jonas Kuhn | Michael Jellinghaus
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

We propose a bootstrapping approach to creating a phrase-level alignment over a sentence-aligned parallel corpus, reporting concrete treebank annotation work performed on a sample of sentence tuples from the Europarl corpus, currently for English, French, German, and Spanish. The manually annotated seed data will be used as the basis for automatically labelling the rest of the corpus. Some preliminary experiments addressing the bootstrapping aspects are presented.The representation format for syntactic correspondence across parallel text that we propose as the starting point for a process of successive refinement emphasizes correspondences of major constituents that realize semantic arguments or modifiers; language-particular details of morphosyntactic realization are intentionally left largely unlabelled. We believe this format is a good basis for training NLPtools for multilingual application contexts in which consistency across languages is more central than fine-grained details in specific languages (in particular, syntax-based statistical Machine Translation).