Automatic Speech Recognition (ASR) is one of the most important technologies to help people live a better life in the 21st century. However, its development requires a big speech corpus for a language. The development of such a corpus is expensive especially for under-resourced Ethiopian languages. To address this problem we have developed four medium-sized (longer than 22 hours each) speech corpora for four Ethiopian languages: Amharic, Tigrigna, Oromo, and Wolaytta. In a way of checking the usability of the corpora and deliver a baseline ASR for each language. In this paper, we present the corpora and the baseline ASR systems for each language. The word error rates (WERs) we achieved show that the corpora are usable for further investigation and we recommend the collection of text corpora to train strong language models for Oromo and Wolaytta compared to others.
Automatic Speech Recognition (ASR) is one of the most important technologies to support spoken communication in modern life. However, its development benefits from large speech corpus. The development of such a corpus is expensive and most of the human languages, including the Ethiopian languages, do not have such resources. To address this problem, we have developed four large (about 22 hours) speech corpora for four Ethiopian languages: Amharic, Tigrigna, Oromo and Wolaytta. To assess usability of the corpora for (the purpose of) speech processing, we have developed ASR systems for each language. In this paper, we present the corpora and the baseline ASR systems we have developed. We have achieved word error rates (WERs) of 37.65%, 31.03%, 38.02%, 33.89% for Amharic, Tigrigna, Oromo and Wolaytta, respectively. This results show that the corpora are suitable for further investigation towards the development of ASR systems. Thus, the research community can use the corpora to further improve speech processing systems. From our results, it is clear that the collection of text corpora to train strong language models for all of the languages is still required, especially for Oromo and Wolaytta.
In this paper, we describe an attempt towards the development of parallel corpora for English and Ethiopian Languages, such as Amharic, Tigrigna, Afan-Oromo, Wolaytta and Ge’ez. The corpora are used for conducting bi-directional SMT experiments. The BLEU scores of the bi-directional SMT systems show a promising result. The morphological richness of the Ethiopian languages has a great impact on the performance of SMT especially when the targets are Ethiopian languages.
In this paper, we describe an attempt towards the development of parallel corpora for English and Ethiopian Languages, such as Amharic, Tigrigna, Afan-Oromo, Wolaytta and Ge’ez. The corpora are used for conducting a bi-directional statistical machine translation experiments. The BLEU scores of the bi-directional Statistical Machine Translation (SMT) systems show a promising result. The morphological richness of the Ethiopian languages has a great impact on the performance of SMT specially when the targets are Ethiopian languages. Now we are working towards an optimal alignment for a bi-directional English-Ethiopian languages SMT.
In this paper, we describe the development of parallel corpora for Ethiopian Languages: Amharic, Tigrigna, Afan-Oromo, Wolaytta and Geez. To check the usability of all the corpora we conducted baseline bi-directional statistical machine translation (SMT) experiments for seven language pairs. The performance of the bi-directional SMT systems shows that all the corpora can be used for further investigations. We have also shown that the morphological complexity of the Ethio-Semitic languages has a negative impact on the performance of the SMT especially when they are target languages. Based on the results we obtained, we are currently working towards handling the morphological complexities to improve the performance of statistical machine translation among the Ethiopian languages.
This paper describes speech translation from Amharic-to-English, particularly Automatic Speech Recognition (ASR) with post-editing feature and Amharic-English Statistical Machine Translation (SMT). ASR experiment is conducted using morpheme language model (LM) and phoneme acoustic model(AM). Likewise,SMT conducted using word and morpheme as unit. Morpheme based translation shows a 6.29 BLEU score at a 76.4% of recognition accuracy while word based translation shows a 12.83 BLEU score using 77.4% word recognition accuracy. Further, after post-edit on Amharic ASR using corpus based n-gram, the word recognition accuracy increased by 1.42%. Since post-edit approach reduces error propagation, the word based translation accuracy improved by 0.25 (1.95%) BLEU score. We are now working towards further improving propagated errors through different algorithms at each unit of speech translation cascading component.
This article presents the data collected and ASR systems developped for 4 sub-saharan african languages (Swahili, Hausa, Amharic and Wolof). To illustrate our methodology, the focus is made on Wolof (a very under-resourced language) for which we designed the first ASR system ever built in this language. All data and scripts are available online on our github repository.