Michele Cafagna


2023

pdf bib
HL Dataset: Visually-grounded Description of Scenes, Actions and Rationales
Michele Cafagna | Kees van Deemter | Albert Gatt
Proceedings of the 16th International Natural Language Generation Conference

Current captioning datasets focus on object-centric captions, describing the visible objects in the image, often ending up stating the obvious (for humans), e.g. “people eating food in a park”. Although these datasets are useful to evaluate the ability of Vision & Language models to recognize and describe visual content, they do not support controlled experiments involving model testing or fine-tuning, with more high-level captions, which humans find easy and natural to produce. For example, people often describe images based on the type of scene they depict (“people at a holiday resort”) and the actions they perform (“people having a picnic”). Such concepts are based on personal experience and contribute to forming common sense assumptions. We present the High-Level Dataset, a dataset extending 14997 images from the COCO dataset, aligned with a new set of 134,973 human-annotated (high-level) captions collected along three axes: scenes, actions and rationales. We further extend this dataset with confidence scores collected from an independent set of readers, as well as a set of narrative captions generated synthetically, by combining each of the three axes. We describe this dataset and analyse it extensively. We also present baseline results for the High-Level Captioning task.

2022

pdf bib
VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena
Letitia Parcalabescu | Michele Cafagna | Lilitta Muradjan | Anette Frank | Iacer Calixto | Albert Gatt
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V&L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V&L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V&L models from a linguistic perspective, complementing the canonical task-centred V&L evaluations.

pdf bib
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Michele Cafagna | Kees van Deemter | Albert Gatt
Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)

Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state of the art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.

2020

pdf bib
On the interaction of automatic evaluation and task framing in headline style transfer
Lorenzo De Mattei | Michele Cafagna | Huiyuan Lai | Felice Dell’Orletta | Malvina Nissim | Albert Gatt
Proceedings of the 1st Workshop on Evaluating NLG Evaluation

An ongoing debate in the NLG community concerns the best way to evaluate systems, with human evaluation often being considered the most reliable method, compared to corpus-based metrics. However, tasks involving subtle textual differences, such as style transfer, tend to be hard for humans to perform. In this paper, we propose an evaluation method for this task based on purposely-trained classifiers, showing that it better reflects system differences than traditional metrics such as BLEU.

pdf bib
Norm It! Lexical Normalization for Italian and Its Downstream Effects for Dependency Parsing
Rob van der Goot | Alan Ramponi | Tommaso Caselli | Michele Cafagna | Lorenzo De Mattei
Proceedings of the Twelfth Language Resources and Evaluation Conference

Lexical normalization is the task of translating non-standard social media data to a standard form. Previous work has shown that this is beneficial for many downstream tasks in multiple languages. However, for Italian, there is no benchmark available for lexical normalization, despite the presence of many benchmarks for other tasks involving social media data. In this paper, we discuss the creation of a lexical normalization dataset for Italian. After two rounds of annotation, a Cohen’s kappa score of 78.64 is obtained. During this process, we also analyze the inter-annotator agreement for this task, which is only rarely done on datasets for lexical normalization,and when it is reported, the analysis usually remains shallow. Furthermore, we utilize this dataset to train a lexical normalization model and show that it can be used to improve dependency parsing of social media data. All annotated data and the code to reproduce the results are available at: http://bitbucket.org/robvanderg/normit.

pdf bib
Invisible to People but not to Machines: Evaluation of Style-aware HeadlineGeneration in Absence of Reliable Human Judgment
Lorenzo De Mattei | Michele Cafagna | Felice Dell’Orletta | Malvina Nissim
Proceedings of the Twelfth Language Resources and Evaluation Conference

We automatically generate headlines that are expected to comply with the specific styles of two different Italian newspapers. Through a data alignment strategy and different training/testing settings, we aim at decoupling content from style and preserve the latter in generation. In order to evaluate the generated headlines’ quality in terms of their specific newspaper-compliance, we devise a fine-grained evaluation strategy based on automatic classification. We observe that our models do indeed learn newspaper-specific style. Importantly, we also observe that humans aren’t reliable judges for this task, since although familiar with the newspapers, they are not able to discern their specific styles even in the original human-written headlines. The utility of automatic evaluation goes therefore beyond saving the costs and hurdles of manual annotation, and deserves particular care in its design.