Michiel de Jong


pdf bib
Generate-and-Retrieve: Use Your Predictions to Improve Retrieval for Semantic Parsing
Yury Zemlyanskiy | Michiel de Jong | Joshua Ainslie | Panupong Pasupat | Peter Shaw | Linlu Qiu | Sumit Sanghai | Fei Sha
Proceedings of the 29th International Conference on Computational Linguistics

A common recent approach to semantic parsing augments sequence-to-sequence models by retrieving and appending a set of training samples, called exemplars. The effectiveness of this recipe is limited by the ability to retrieve informative exemplars that help produce the correct parse, which is especially challenging in low-resource settings. Existing retrieval is commonly based on similarity of query and exemplar inputs. We propose GandR, a retrieval procedure that retrieves exemplars for which outputs are also similar. GandR first generates a preliminary prediction with input-based retrieval. Then, it retrieves exemplars with outputs similar to the preliminary prediction which are used to generate a final prediction. GandR sets the state of the art on multiple low-resource semantic parsing tasks.


pdf bib
ReadTwice: Reading Very Large Documents with Memories
Yury Zemlyanskiy | Joshua Ainslie | Michiel de Jong | Philip Pham | Ilya Eckstein | Fei Sha
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Knowledge-intensive tasks such as question answering often require assimilating information from different sections of large inputs such as books or article collections. We propose ReadTwice, a simple and effective technique that combines several strengths of prior approaches to model long-range dependencies with Transformers. The main idea is to read text in small segments, in parallel, summarizing each segment into a memory table to be used in a second read of the text. We show that the method outperforms models of comparable size on several question answering (QA) datasets and sets a new state of the art on the challenging NarrativeQA task, with questions about entire books.