Mickaël Rouvier

Also published as: Mickael Rouvier


2024

pdf bib
BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
Yanis Labrak | Adrien Bazoge | Emmanuel Morin | Pierre-Antoine Gourraud | Mickael Rouvier | Richard Dufour
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral’s superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.

pdf bib
Un paradigme pour l’interprétation des métriques et pour mesurer la gravité des erreurs de reconnaissance automatique de la parole
Thibault Batextasciitilde neras Roux | Mickael Rouvier | Jane Wottawa | Richard Dufour
Actes des 35èmes Journées d'Études sur la Parole

Les mesures couramment employées pour l’évaluation des transcriptions automatiques de la parole, telles que le taux d’erreur-mot (WER) et le taux d’erreur-caractère (CER), ont fait l’objet d’importantes critiques en raison de leur corrélation limitée avec la perception humaine et de leur incapacité à prendre en compte les nuances linguistiques et sémantiques. Bien que des métriques fondées sur les plongements sémantiques aient été introduites pour se rapprocher de la perception humaine, leur interprétabilité reste difficile par rapport au WER et CER. Dans cet article, nous surmontons ce problème en introduisant un paradigme qui intègre une métrique choisie pour obtenir un équivalent du taux d’erreur appelé Distance d’Édition Minimale, ou Minimum Edit Distance (minED). Nous proposons également d’utiliser cette approche pour mesurer la gravité des erreurs en fonction d’une métrique, d’un point de vue intrinsèque et extrinsèque.

pdf bib
Actes du Défi Fouille de Textes@TALN 2024
Richard Dufour | Benoit Favre | Mickael Rouvier | Adrien Bazoge | Yanis Labrak
Actes du Défi Fouille de Textes@TALN 2024

pdf bib
Tâches et systèmes de sélection automatique de réponses à des QCM dans le domaine médical : Présentation de la campagne DEFT 2024
Adrien Bazoge | Yanis Labrak | Richard Dufour | Benoit Favre | Mickael Rouvier
Actes du Défi Fouille de Textes@TALN 2024

L’édition 2024 du DÉfi Fouille de Textes (DEFT) met l’accent sur le développement de méthodes pour la sélection automatique de réponses pour des questions à choix multiples (QCM) en français. Les méthodes sont évaluées sur un nouveau sous-ensemble du corpus FrenchMedMCQA, comprenant 3 105 questions fermées avec cinq options chacune, provenant des archives d’examens de pharmacie. Dans la première tâche, les participants doivent se concentrer sur des petits modèles de langue (PML) avec moins de 3 milliards de paramètres et peuvent également utiliser les corpus spécifiques au domaine médical NACHOS et Wikipedia s’ils souhaitent appliquer des approches du type Retrieval-Augmented Generation (RAG). La second tâche lève la restriction sur la taille des modèles de langue. Les résultats, mesurés par l’Exact Match Ratio (EMR), varient de 1,68 à 11,74 tandis que les performances selon le score de Hamming vont de 28,75 à 49,15 pour la première tâche. Parmi les approches proposées par les cinq équipes participantes, le meilleur système utilise une chaîne combinant un classifieur CamemBERT-bio pour identifier le type de question et un système RAG fondé sur Apollo 2B, affiné avec la méthode d’adaptation LoRA sur les données de l’année précédente.

pdf bib
A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks
Yanis Labrak | Mickael Rouvier | Richard Dufour
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The recent emergence of Large Language Models (LLMs) has enabled significant advances in the field of Natural Language Processing (NLP). While these new models have demonstrated superior performance on various tasks, their application and potential are still underexplored, both in terms of the diversity of tasks they can handle and their domain of application. In this context, we evaluate four state-of-the-art instruction-tuned LLMs (ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca) on a set of 13 real-world clinical and biomedical NLP tasks in English, including named-entity recognition (NER), question-answering (QA), relation extraction (RE), and more. Our overall results show that these evaluated LLMs approach the performance of state-of-the-art models in zero- and few-shot scenarios for most tasks, particularly excelling in the QA task, even though they have never encountered examples from these tasks before. However, we also observe that the classification and RE tasks fall short of the performance achievable with specifically trained models designed for the medical field, such as PubMedBERT. Finally, we note that no single LLM outperforms all others across all studied tasks, with some models proving more suitable for certain tasks than others.

pdf bib
DrBenchmark: A Large Language Understanding Evaluation Benchmark for French Biomedical Domain
Yanis Labrak | Adrien Bazoge | Oumaima El Khettari | Mickael Rouvier | Pacome Constant Dit Beaufils | Natalia Grabar | Béatrice Daille | Solen Quiniou | Emmanuel Morin | Pierre-Antoine Gourraud | Richard Dufour
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The biomedical domain has sparked a significant interest in the field of Natural Language Processing (NLP), which has seen substantial advancements with pre-trained language models (PLMs). However, comparing these models has proven challenging due to variations in evaluation protocols across different models. A fair solution is to aggregate diverse downstream tasks into a benchmark, allowing for the assessment of intrinsic PLMs qualities from various perspectives. Although still limited to few languages, this initiative has been undertaken in the biomedical field, notably English and Chinese. This limitation hampers the evaluation of the latest French biomedical models, as they are either assessed on a minimal number of tasks with non-standardized protocols or evaluated using general downstream tasks. To bridge this research gap and account for the unique sensitivities of French, we present the first-ever publicly available French biomedical language understanding benchmark called DrBenchmark. It encompasses 20 diversified tasks, including named-entity recognition, part-of-speech tagging, question-answering, semantic textual similarity, or classification. We evaluate 8 state-of-the-art pre-trained masked language models (MLMs) on general and biomedical-specific data, as well as English specific MLMs to assess their cross-lingual capabilities. Our experiments reveal that no single model excels across all tasks, while generalist models are sometimes still competitive.

pdf bib
How Important Is Tokenization in French Medical Masked Language Models?
Yanis Labrak | Adrien Bazoge | Béatrice Daille | Mickael Rouvier | Richard Dufour
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Subword tokenization has become the prevailing standard in the field of natural language processing (NLP) over recent years, primarily due to the widespread utilization of pre-trained language models. This shift began with Byte-Pair Encoding (BPE) and was later followed by the adoption of SentencePiece and WordPiece. While subword tokenization consistently outperforms character and word-level tokenization, the precise factors contributing to its success remain unclear. Key aspects such as the optimal segmentation granularity for diverse tasks and languages, the influence of data sources on tokenizers, and the role of morphological information in Indo-European languages remain insufficiently explored. This is particularly pertinent for biomedical terminology, characterized by specific rules governing morpheme combinations. Despite the agglutinative nature of biomedical terminology, existing language models do not explicitly incorporate this knowledge, leading to inconsistent tokenization strategies for common terms. In this paper, we seek to delve into the complexities of subword tokenization in French biomedical domain across a variety of NLP tasks and pinpoint areas where further enhancements can be made. We analyze classical tokenization algorithms, including BPE and SentencePiece, and introduce an original tokenization strategy that integrates morpheme-enriched word segmentation into existing tokenization methods.

2023

pdf bib
DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains
Yanis Labrak | Adrien Bazoge | Richard Dufour | Mickael Rouvier | Emmanuel Morin | Béatrice Daille | Pierre-Antoine Gourraud
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. In particular, we show that we can take advantage of already existing biomedical PLMs in a foreign language by further pre-train it on our targeted data. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.

pdf bib
HATS : Un jeu de données intégrant la perception humaine appliquée à l’évaluation des métriques de transcription de la parole
Thibault Bañeras-Roux | Jane Wottawa | Mickael Rouvier | Teva Merlin | Richard Dufour
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Traditionnellement, les systèmes de reconnaissance automatique de la parole (RAP) sont évalués sur leur capacité à reconnaître correctement chaque mot contenu dans un signal vocal. Dans ce contexte, la mesure du taux d’erreur-mot est la référence pour évaluer les transcriptions vocales. Plusieurs études ont montré que cette mesure est trop limitée pour évaluer correctement un système de RAP, ce qui a conduit à la proposition d’autres variantes et d’autres métriques. Cependant, toutes ces métriques restent orientées “système” alors même que les transcriptions sont destinées à des humains. Dans cet article, nous proposons un jeu de données original annoté manuellement en termes de perception humaine des erreurs de transcription produites par divers systèmes de RAP. Plus de 120 humains ont été invités à choisir la meilleure transcription automatique entre deux hypothèses. Nous étudions la relation entre les préférences humaines et diverses mesures d’évaluation pour les systèmes de RAP, y compris les mesures lexicales et celles fondées sur les plongements de mots.

pdf bib
DrBERT: Un modèle robuste pré-entraîné en français pour les domaines biomédical et clinique
Yanis Labrak | Adrien Bazoge | Richard Dufour | Mickael Rouvier | Emmanuel Morin | Béatrice Daille | Pierre-Antoine Gourraud
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Ces dernières années, les modèles de langage pré-entraînés ont obtenu les meilleures performances sur un large éventail de tâches de traitement automatique du langage naturel (TALN). Alors que les premiers modèles ont été entraînés sur des données issues de domaines généraux, des modèles spécialisés sont apparus pour traiter plus efficacement des domaines spécifiques. Dans cet article, nous proposons une étude originale de modèles de langue dans le domaine médical en français. Nous comparons pour la première fois les performances de modèles entraînés sur des données publiques issues du web et sur des données privées issues d’établissements de santé. Nous évaluons également différentes stratégies d’apprentissage sur un ensemble de tâches biomédicales. Enfin, nous publions les premiers modèles spécialisés pour le domaine biomédical en français, appelés DrBERT, ainsi que le plus grand corpus de données médicales sous licence libre sur lequel ces modèles sont entraînés.

pdf bib
MORFITT : Un corpus multi-labels d’articles scientifiques français dans le domaine biomédical
Yanis Labrak | Mickael Rouvier | Richard Dufour
Actes de CORIA-TALN 2023. Actes de l'atelier "Analyse et Recherche de Textes Scientifiques" (ARTS)@TALN 2023

Cet article présente MORFITT, le premier corpus multi-labels en français annoté en spécialités dans le domaine médical. MORFITT est composé de 3 624 résumés d’articles scientifiques issus de PubMed, annotés en 12 spécialités pour un total de 5 116 annotations. Nous détaillons le corpus, les expérimentations et les résultats préliminaires obtenus à l’aide d’un classifieur fondé sur le modèle de langage pré-entraîné CamemBERT. Ces résultats préliminaires démontrent la difficulté de la tâche, avec un F-score moyen pondéré de 61,78%.

pdf bib
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023
Adrien Bazoge | Béatrice Daille | Richard Dufour | Yanis Labrak | Emmanuel Morin | Mickael Rouvier
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023

pdf bib
Tâches et systèmes de détection automatique des réponses correctes dans des QCMs liés au domaine médical : Présentation de la campagne DEFT 2023
Yanis Labrak | Adrien Bazoge | Béatrice Daille | Richard Dufour | Emmanuel Morin | Mickael Rouvier
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023

L’édition 2023 du DÉfi Fouille de Textes (DEFT) s’est concentrée sur le développement de méthodes permettant de choisir automatiquement des réponses dans des questions à choix multiples (QCMs) en français. Les approches ont été évaluées sur le corpus FrenchMedMCQA, intégrant un ensemble de QCMs avec, pour chaque question, cinq réponses potentielles, dans le cadre d’annales d’examens de pharmacie.Deux tâches ont été proposées. La première consistait à identifier automatiquement l’ensemble des réponses correctes à une question. Les résultats obtenus, évalués selon la métrique de l’Exact Match Ratio (EMR), variaient de 9,97% à 33,76%, alors que les performances en termes de distance de Hamming s’échelonnaient de 24,93 à 52,94. La seconde tâche visait à identifier automatiquement le nombre exact de réponses correctes. Les résultats, quant à eux, étaient évalués d’une part avec la métrique de F1-Macro, variant de 13,26% à 42,42%, et la métrique (Accuracy), allant de 47,43% à 68,65%. Parmi les approches variées proposées par les six équipes participantes à ce défi, le meilleur système s’est appuyé sur un modèle de langage large de type LLaMa affiné en utilisant la méthode d’adaptation LoRA.

2022

pdf bib
Mesures linguistiques automatiques pour l’évaluation des systèmes de Reconnaissance Automatique de la Parole (Automated linguistic measures for automatic speech recognition systems’ evaluation)
Thibault Bañeras Roux | Mickaël Rouvier | Jane Wottawa | Richard Dufour
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

L’évaluation de transcriptions issues de systèmes de Reconnaissance Automatique de la Parole (RAP) est un problème difficile et toujours ouvert, qui se résume généralement à ne considérer que le WER. Nous présentons dans cet article un ensemble de métriques, souvent utilisées dans d’autres tâches en traitement du langage naturel, que nous proposons d’appliquer en complément du WER en RAP. Nous introduisons en particulier deux mesures considérant les aspects morpho-syntaxiques et sémantiques des mots transcrits : 1) le POSER (Part-of-speech Error Rate), qui évalue les aspects grammaticaux, et 2) le EmbER (Embedding Error Rate), une mesure originale qui reprend celle du WER en apportant une pondération en fonction de la distance sémantique des mots mal transcrits. Afin de montrer les informations supplémentaires qu’elles apportent, nous proposons également une analyse qualitative décrivant l’apport au niveau linguistique de modèles de langage utilisés pour le réordonnancement d’hypothèses de transcription a posteriori.

pdf bib
Correction automatique d’examens écrits par approche neuronale profonde et attention croisée bidirectionnelle (Deep Neural Networks and Bidirectional Cross-Attention for Automatic Answer Grading)
Yanis Labrak | Philippe Turcotte | Richard Dufour | Mickael Rouvier
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Atelier DÉfi Fouille de Textes (DEFT)

Cet article présente les systèmes développés par l’équipe LIA-LS2N dans le cadre de la campagne d’évaluation DEFT 2022 (Grouin & Illouz, 2022). Nous avons participé à la première tâche impliquant la correction automatique de copies d’étudiants à partir de références existantes. Nous proposons trois systèmes de classification reposant sur des caractéristiques extraites de plongements de mots contextuels issus d’un modèle BERT (CamemBERT). Nos approches reposent sur les concepts suivants : extraction de mesures de similarité entre les plongements de mots, attention croisée bidirectionnelle entre les plongements et fine-tuning (affinage) des plongements de mots. Les soumissions finales comprenaient deux systèmes fusionnés combinant l’attention croisée bidirectionnelle avec nos classificateurs basés sur BERT et celui sur les mesures de similarité. Notre meilleure soumission obtient une précision de 72,6 % en combinant le classifieur basé sur un modèle CamemBERT affiné et le mécanisme d’attention croisée bidirectionnelle. Ces résultats sont proches de ceux obtenus par le meilleur système de cette édition (75,6 %).

pdf bib
FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain
Yanis Labrak | Adrien Bazoge | Richard Dufour | Beatrice Daille | Pierre-Antoine Gourraud | Emmanuel Morin | Mickael Rouvier
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)

This paper introduces FrenchMedMCQA, the first publicly available Multiple-Choice Question Answering (MCQA) dataset in French for medical domain. It is composed of 3,105 questions taken from real exams of the French medical specialization diploma in pharmacy, mixing single and multiple answers. Each instance of the dataset contains an identifier, a question, five possible answers and their manual correction(s). We also propose first baseline models to automatically process this MCQA task in order to report on the current performances and to highlight the difficulty of the task. A detailed analysis of the results showed that it is necessary to have representations adapted to the medical domain or to the MCQA task: in our case, English specialized models yielded better results than generic French ones, even though FrenchMedMCQA is in French. Corpus, models and tools are available online.

pdf bib
Far-Field Speaker Recognition Benchmark Derived From The DiPCo Corpus
Mickael Rouvier | Mohammad Mohammadamini
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper, we present a far-field speaker verification benchmark derived from the publicly-available DiPCo corpus. This corpus comprise three different tasks that involve enrollment and test conditions with single- and/or multi-channels recordings. The main goal of this corpus is to foster research in far-field and multi-channel text-independent speaker verification. Also, it can be used for other speaker recognition tasks such as dereverberation, denoising and speech enhancement. In addition, we release a Kaldi and SpeechBrain system to facilitate further research. And we validate the evaluation design with a single-microphone state-of-the-art speaker recognition system (i.e. ResNet-101). The results show that the proposed tasks are very challenging. And we hope these resources will inspire the speech community to develop new methods and systems for this challenging domain.

pdf bib
Speech Resources in the Tamasheq Language
Marcely Zanon Boito | Fethi Bougares | Florentin Barbier | Souhir Gahbiche | Loïc Barrault | Mickael Rouvier | Yannick Estève
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper we present two datasets for Tamasheq, a developing language mainly spoken in Mali and Niger. These two datasets were made available for the IWSLT 2022 low-resource speech translation track, and they consist of collections of radio recordings from daily broadcast news in Niger (Studio Kalangou) and Mali (Studio Tamani). We share (i) a massive amount of unlabeled audio data (671 hours) in five languages: French from Niger, Fulfulde, Hausa, Tamasheq and Zarma, and (ii) a smaller 17 hours parallel corpus of audio recordings in Tamasheq, with utterance-level translations in the French language. All this data is shared under the Creative Commons BY-NC-ND 3.0 license. We hope these resources will inspire the speech community to develop and benchmark models using the Tamasheq language.

2017

pdf bib
LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Classification
Mickael Rouvier
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes the system developed at LIA for the SemEval-2017 evaluation campaign. The goal of Task 4.A was to identify sentiment polarity in tweets. The system is an ensemble of Deep Neural Network (DNN) models: Convolutional Neural Network (CNN) and Recurrent Neural Network Long Short-Term Memory (RNN-LSTM). We initialize the input representation of DNN with different sets of embeddings trained on large datasets. The ensemble of DNNs are combined using a score-level fusion approach. The system ranked 2nd at SemEval-2017 and obtained an average recall of 67.6%.

2016

pdf bib
Fusion d’espaces de représentations multimodaux pour la reconnaissance du rôle du locuteur dans des documents télévisuels (Multimodal embedding fusion for robust speaker role recognition in video broadcast )
Sebastien Delecraz | Frederic Bechet | Benoit Favre | Mickael Rouvier
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

L’identification du rôle d’un locuteur dans des émissions de télévision est un problème de classification de personne selon une liste de rôles comme présentateur, journaliste, invité, etc. À cause de la nonsynchronie entre les modalités, ainsi que par le manque de corpus de vidéos annotées dans toutes les modalités, seulement une des modalités est souvent utilisée. Nous présentons dans cet article une fusion multimodale des espaces de représentations de l’audio, du texte et de l’image pour la reconnaissance du rôle du locuteur pour des données asynchrones. Les espaces de représentations monomodaux sont entraînés sur des corpus de données exogènes puis ajustés en utilisant des réseaux de neurones profonds sur un corpus d’émissions françaises pour notre tâche de classification. Les expériences réalisées sur le corpus de données REPERE ont mis en évidence les gains d’une fusion au niveau des espaces de représentations par rapport aux méthodes de fusion tardive standard.

pdf bib
SENSEI-LIF at SemEval-2016 Task 4: Polarity embedding fusion for robust sentiment analysis
Mickael Rouvier | Benoit Favre
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2012

pdf bib
Nouvelle approche pour le regroupement des locuteurs dans des émissions radiophoniques et télévisuelles (New approach for speaker clustering of broadcast news) [in French]
Mickael Rouvier | Sylvain Meignier
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP

pdf bib
Segmentation et Regroupement en Locuteurs d’une collection de documents audio (Cross-show speaker diarization) [in French]
Grégor Dupuy | Mickael Rouvier | Sylvain Meignier | Yannick Estève
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP

pdf bib
Avancées dans le domaine de la transcription automatique par décodage guidé (Improvements on driven decoding system combination) [in French]
Fethi Bougares | Yannick Estève | Paul Deléglise | Mickael Rouvier | Georges Linarès
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP

2011

pdf bib
Qui êtes-vous ? Catégoriser les questions pour déterminer le rôle des locuteurs dans des conversations orales (Who are you? Categorize questions to determine the role of speakers in oral conversations)
Thierry Bazillon | Benjamin Maza | Mickael Rouvier | Frédéric Béchet | Alexis Nasr
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

La fouille de données orales est un domaine de recherche visant à caractériser un flux audio contenant de la parole d’un ou plusieurs locuteurs, à l’aide de descripteurs liés à la forme et au contenu du signal. Outre la transcription automatique en mots des paroles prononcées, des informations sur le type de flux audio traité ainsi que sur le rôle et l’identité des locuteurs sont également cruciales pour permettre des requêtes complexes telles que : « chercher des débats sur le thème X », « trouver toutes les interviews de Y », etc. Dans ce cadre, et en traitant des conversations enregistrées lors d’émissions de radio ou de télévision, nous étudions la manière dont les locuteurs expriment des questions dans les conversations, en partant de l’intuition initiale que la forme des questions posées est une signature du rôle du locuteur dans la conversation (présentateur, invité, auditeur, etc.). En proposant une classification du type des questions et en utilisant ces informations en complément des descripteurs généralement utilisés dans la littérature pour classer les locuteurs par rôle, nous espérons améliorer l’étape de classification, et valider par la même occasion notre intuition initiale.

2010

pdf bib
Classification du genre vidéo reposant sur des transcriptions automatiques
Stanislas Oger | Mickael Rouvier | Georges Linarès
Actes de la 17e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Dans cet article nous proposons une nouvelle méthode pour l’identification du genre vidéo qui repose sur une analyse de leur contenu linguistique. Cette approche consiste en l’analyse des mots apparaissant dans les transcriptions des pistes audio des vidéos, obtenues à l’aide d’un système de reconnaissance automatique de la parole. Les expériences sont réalisées sur un corpus composé de dessins animés, de films, de journaux télévisés, de publicités, de documentaires, d’émissions de sport et de clips de musique. L’approche proposée permet d’obtenir un taux de bonne classification de 74% sur cette tâche. En combinant cette approche avec des méthodes reposant sur des paramètres acoustiques bas-niveau, nous obtenons un taux de bonne classification de 95%.