Unsupervised multimodal machine translation (UMMT) aims to leverage vision information as a pivot between two languages to achieve better performance on low-resource language pairs. However, there is presently a challenge: how to handle alignment between distant language pairs (DLPs) in UMMT. To this end, this paper proposes a visual pivoting UMMT method for DLPs. Specifically, we first construct a dataset containing two DLPs, including English-Uyghur and Chinese-Uyghur. We then apply the visual pivoting method for both to pre-training and fine-tuning, and we observe that the images on the encoder and decoder of UMMT have noticeable effects on DLPs. Finally, we introduce informative multi-granularity image features to facilitate further alignment of the latent space between the two languages. Experimental results show that the proposed method significantly outperforms several baselines on DLPs and close language pairs (CLPs).
Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing SOTA approaches, under both the standard FSL and generalized FSL settings.
Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the models with the fixed corpus at every iteration. The intermediate generated information is also valuable. Besides, the robustness of the previous neural methods is limited by the large-scale annotated data. There are a few noises in the annotated corpus. Limited efforts have been made by previous studies to deal with such problems. In this work, we propose a self-supervised CWS approach with a straightforward and effective architecture. First, we train a word segmentation model and use it to generate the segmentation results. Then, we use a revised masked language model (MLM) to evaluate the quality of the segmentation results based on the predictions of the MLM. Finally, we leverage the evaluations to aid the training of the segmenter by improved minimum risk training. Experimental results show that our approach outperforms previous methods on 9 different CWS datasets with single criterion training and multiple criteria training and achieves better robustness.
Quality estimation (QE) of machine translation (MT) aims to evaluate the quality of machine-translated sentences without references and is important in practical applications of MT. Training QE models require massive parallel data with hand-crafted quality annotations, which are time-consuming and labor-intensive to obtain. To address the issue of the absence of annotated training data, previous studies attempt to develop unsupervised QE methods. However, very few of them can be applied to both sentence- and word-level QE tasks, and they may suffer from noises in the synthetic data. To reduce the negative impact of noises, we propose a self-supervised method for both sentence- and word-level QE, which performs quality estimation by recovering the masked target words. Experimental results show that our method outperforms previous unsupervised methods on several QE tasks in different language pairs and domains.