Mike Zheng Shou


pdf bib
CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding
Zhijian Hou | Wanjun Zhong | Lei Ji | Difei Gao | Kun Yan | W.k. Chan | Chong-Wah Ngo | Mike Zheng Shou | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper tackles an emerging and challenging problem of long video temporal grounding (VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13 to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.


pdf bib
AssistSR: Task-oriented Video Segment Retrieval for Personal AI Assistant
Weixian Lei | Difei Gao | Yuxuan Wang | Dongxing Mao | Zihan Liang | Lingmin Ran | Mike Zheng Shou
Findings of the Association for Computational Linguistics: EMNLP 2022

It is still a pipe dream that personal AI assistants on the phone and AR glasses can assist our daily life in addressing our questions like “how to adjust the date for this watch?” and “how to set its heating duration? (while pointing at an oven)”. The queries used in conventional tasks (i.e. Video Question Answering, Video Retrieval, Moment Localization) are often factoid and based on pure text. In contrast, we present a new task called Task-oriented Question-driven Video Segment Retrieval (TQVSR). Each of our questions is an image-box-text query that focuses on affordance of items in our daily life and expects relevant answer segments to be retrieved from a corpus of instructional video-transcript segments. To support the study of this TQVSR task, we construct a new dataset called AssistSR. We design novel guidelines to create high-quality samples. This dataset contains 3.2k multimodal questions on 1.6k video segments from instructional videos on diverse daily-used items. To address TQVSR, we develop a simple yet effective model called Dual Multimodal Encoders (DME) that significantly outperforms several baseline methods while still having large room for improvement in the future. Moreover, we present detailed ablation analyses. Code and data are available at https://github.com/StanLei52/TQVSR.


pdf bib
On Pursuit of Designing Multi-modal Transformer for Video Grounding
Meng Cao | Long Chen | Mike Zheng Shou | Can Zhang | Yuexian Zou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Video grounding aims to localize the temporal segment corresponding to a sentence query from an untrimmed video. Almost all existing video grounding methods fall into two frameworks: 1) Top-down model: It predefines a set of segment candidates and then conducts segment classification and regression. 2) Bottom-up model: It directly predicts frame-wise probabilities of the referential segment boundaries. However, all these methods are not end-to-end, i.e., they always rely on some time-consuming post-processing steps to refine predictions. To this end, we reformulate video grounding as a set prediction task and propose a novel end-to-end multi-modal Transformer model, dubbed as GTR. Specifically, GTR has two encoders for video and language encoding, and a cross-modal decoder for grounding prediction. To facilitate the end-to-end training, we use a Cubic Embedding layer to transform the raw videos into a set of visual tokens. To better fuse these two modalities in the decoder, we design a new Multi-head Cross-Modal Attention. The whole GTR is optimized via a Many-to-One matching loss. Furthermore, we conduct comprehensive studies to investigate different model design choices. Extensive results on three benchmarks have validated the superiority of GTR. All three typical GTR variants achieve record-breaking performance on all datasets and metrics, with several times faster inference speed.